一、推荐系统简介
1)推荐系统的概念
没有明确的需求用户访问了我们的服务,且服务的物品对用户构成了信息过载,系统通过一定的规则对物品进行排序,并将排序在前面的物品展示给用户,这样的系统就是推荐系统。
补充:
-
信息过载:就是数据量太大,不能通过遍历得到,经过简单的分析处理是很难进行信息遍历的。
-
推荐系统VS搜索引擎
搜索 | 推荐 | |
---|---|---|
行为方式 | 主动 | 被动 |
意图 | 明确 | 模糊 |
个性化 | 弱 | 强 |
流量分布 | 马太效应 | 长尾效应 |
目标 | 快速满足 | 持续服务 |
评估指标 | 简明 | 复杂 |
2)推荐系统的工作原理及作用:
- 推荐系统的工作原理
- 社会化的推荐 ,向朋友资讯。
- 基于内容的推荐 ,在搜素栏输入自己喜欢的电影名,然后在返回结果中会返回其他内容类似的电影
- 基于流行度的推荐 ,查看票房排行榜
- 基于协同过滤的推荐 ,找到和自己兴趣相似的用户,看他们在看什么电影
- 推荐系统的作用
- 高效连接用户和物品
- 提高用户的活跃程度和停留时间
- 有效的帮助产品实现其商业价值
3)推荐系统和Web项目的区别:
- 通过信息过滤实现目标提升 VS 稳定的信息流通系统
- web项目:处理复杂的业务逻辑,处理高并发,为用户构建一个稳定的信息流通服务
- 推荐系统:追求指标增长,留存率/阅读时间等
- 确定思维 VS 不确定思维
- web项目:对结果有确定的预期效果
- 推荐系统:结果是一个概率问题