八、Scrapy基础
1.scrapy的概念
Scrapy是一个Python编写的开源网络爬虫框架。它是一个被设计用于爬取网络数据、提取结构性能数据的框架。
Scrapy底层使用了Twisted一步网络框架,可以加快我们的下载速度。
2.scrapy框架的作用
少量的代码,就能够实现快速的抓取
3.scrapy的工作流程
1.爬虫中的起始url构造成request对象—>爬虫中间件—>引擎—>调度器
2.调度器把request—>引擎—>下载中间件—>下载器
3.下载器发送请求,获取response响应—>下载中间件—>引擎—>爬虫中间件—>爬虫
4.爬虫提取url地址,组装成request对象—>爬虫中间件—>引擎—>调度器,重复步骤2
5.爬虫提取数据—>引擎—>管道处理和保存数据
3.1 scrapy的三个内置对象
- request请求对象:由url method post_data headers等构成
- response响应对象:由url body status headers等构成
- item数据对象:本质是个字典
3.2 scrapy每个模块的具体作用
- Scrapy Engin(引擎) 总指挥:负责数据和信号在不同模块之间的传递
- Scheduler(调度器)一个队列,存放引擎发过来的request请求
- Downloader(下载器)下载把引擎发过来的requests请求,并返回给引擎
- Spider(爬虫)处理引擎发过来的response,提取数据,提取url,并将给引擎
- Item Pipline(管道)处理引擎传过来的数据,比如存储
- Downloader Middlewares(下载中间件)可以自定义的下载扩展,比如设置代理
- Spider MiddlewaresSpider(中间件)可以自定义requests请求和进行response过滤
4.scrapy的入门使用
4.1安装scrapy
- 命令 sudo apt-get install scrapy
- 或 pip/pip3 install scrapy
4.2 scrapy项目开发流程
- 1.创建项目
- scrapy startproject mySpider
- 2.生成一个爬虫
- scrapy genspider asd asd.cn
- 3.提取数据
- 根据网站结构在spider中实现数据采集相关内容
- 4.保存数据
- 使用pipeline进行数据后续处理和保存
4.2.1创建项目
- scrapy startproject <项目名字>
生成的目录和文件作用:
- items.py 自己预计需要爬取的内容
- middlewares.py 自定义中间件的文件
- pielines.py 管道 ,保存数据
- settings.py 设置文件,UA,启动管道
- spiders 自己定义的spider的文件夹
- scrapy.cfg 项目的配置文件
4.2.2 创建爬虫
- 在项目路径下执行
- scrapy genspider <爬虫名字><允许爬取的域名>
爬虫名字:作为爬虫运行时候的参数
允许爬取的域名:为对于爬虫设置的爬取范围,设置之后用于过滤要爬取的url,如果爬取的url与允许的域不通则被过滤掉
此时会出现一个以爬虫名字为名的.py文件,里面有三个参数和一个parse方法。
4.2.3.1完善爬虫
- 1.修改起始url
- 2.检查修改允许的域名
- 3.在parse方法中实现爬取逻辑
注意:
- scrapy.Spider爬虫类中必须有名为parse的解析
- 如果网站的结构层次比较复杂,也可以自定义其他解析函数
- 在解析函数中提取的url地址如果要发送请求,则必须属于allowed_domains范围内,但是start_url中的url地址不受这个限制
- parse()函数中使用yield返回数据,注意:解析函数种种那个的yield能够传递的对象只能是:BaseItem,Request,dict,None
4.2.3.2 定位元素以及提取数据、属性值的方法
解析并获取scrapy爬虫中的数据:利用xpath规则字符串进行定位和提取
1.response.xpath方法的返回结果是一个类似list的类型,其中包含的是selector对象,操作和列表一样,但是有一些额外的方法。
2.额外方法extract():返回一个包含有字符串的列表
3.额外方法extract_first():返回列表中的第一个字符串,列表为空没有返回None
4.2.3.3 response响应对象的常用属性
- response.url:当前响应的url地址
- response.request.url:当前响应对应的请求的url地址
- response.headers:响应头
- response.requests.headers:当前响应的请求头
- response.body:响应体,也就是html代码,byte类型
- response.status:响应状态码
4.2.4 保存数据
利用管道pipeline来处理(保存)数据
-
1.在pipelines.py文件中定义对数据的操作
- 定义一个管道类
- 重写管道类process_item方法
- process_item方法处理完item之后必须返回给引擎
import json class MyspiderPipeline(object): def __init__(self): self.file = open('itcast.json','w') # 爬虫文件中提取数据的方法每yield一次item,就会运行一次 # 该方法为固定名称函数 def process_item(self, item, spider): json_data = json.dumps(item, ensure_ascii=False) + ',\n' self.file.write(json_data) # 默认使用完管道,需要将数据返回给引擎 return item def __del__(self): self.file.close()
-
2.在settings.py配置文件的第67行启用管道
ITEM_PIPELINES = { 'myspider.pipelines.SpiderPipiline':400 }
配置项中键为使用的管道类,管道类使用.进行分隔,第一个为项目目录,第二个为文件,第三个为定义的管道类。
配置项中值为管道的使用顺序,设置的数值越小越优先执行,该值一般设置为1000以内。
4.3 运行scarpy
scrapy crawl spider