自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 OpenCV Python 版使用教程(三)摄像头读取延迟解决方法

在上一篇中,简单介绍了如何使用 OpenCV 操作摄像头,本期来讲在摄像头读取时,可能会出现画面延迟的解决方法。

2024-11-01 16:26:24 1685 1

原创 OpenCV Python 版使用教程(二)摄像头调用

在上一篇中,简单介绍了如何在 Windows 和 Ubuntu 两个环境下部署和安装 OpenCV,从本篇开始将逐步介绍 OpenCV 中的常见操作。

2024-11-01 16:24:55 1815

原创 OpenCV Python 版使用教程(一)下载安装

OpenCV(Open Source Computer Vision Library)是一个开源计算机视觉和机器学习库,提供了丰富的图像处理和计算机视觉功能,广泛用于实时图像处理、机器学习和深度学习等领域。

2024-11-01 16:24:19 3129

原创 git 基本操作教程指南

Git 是一个分布式版本控制系统,主要用于跟踪项目文件和代码的变化。它允许多个开发者协作,支持高效的分支管理和快速的本地操作,每个开发者的工作副本都包含完整的版本历史,便于查看和恢复更改。Git 在开源项目和团队开发中广泛应用。

2024-10-23 21:26:22 960 1

原创 Linux 基础命令介绍(持续更新,2024.10.30更新)

在上一篇文章中,我们已经学会了如何在 Windows 中安装了 Linux,从本文开始,将简单介绍 Linux 中的常见终端命令。cd DIRDIR为具体的文件夹路径,如果不写,则为默认的用户文件夹路径,即~/以上的命令均为 Linux 中相对基础的命令,这些命令虽然比较简单,但是对于理解Linux Shell的工作原理和环境管理非常重要,是作为 Linux 入门必备的知识之一。

2024-05-21 20:33:55 994 3

原创 Windows Subsystem for Linux (WSL, Ubuntu) 最新安装教程(2024.11 更新)

WSL(Windows Subsystem for Linux)是微软开发的一项技术,允许用户在Windows系统中直接运行完整的Linux环境,无需虚拟机。通过操作系统级虚拟化,WSL将Linux子系统无缝嵌入Windows,提供原生Linux命令行工具、软件包管理器及应用程序支持。它具有轻量化、文件系统集成、良好的交互性及开发效率提升等优点,消除了Windows与Linux之间的隔阂,尤其适合开发者和需在Windows平台上使用Linux工具的用户。

2024-04-19 11:52:06 76054 55

原创 Python + IDE(VSCode, PyCharm) 详细安装使用教程

Python是一种简洁、易学的高级编程语言,强调代码可读性。它采用缩进而非花括号组织代码块,支持多种编程范式。Python具有丰富的标准库和海量第三方包(如NumPy、Pandas等),适用于Web开发、数据分析、AI/ML等领域,具备跨平台性和良好的社区支持。其“ batteries included”理念和“人生苦短,我用Python!”的口号彰显其高效、便捷的编程优势。

2024-04-16 11:55:10 7502 9

原创 2024最近 Anaconda 环境配置以及conda 常用命令讲解

Anaconda 是一个开源的 Python 发行版,专为数据科学、机器学习、大数据处理和预测分析等领域设计,集成了 Python 解释器、强大的包管理工具 Conda,以及超过 180 个科学计算相关的库及其依赖项。Conda 作为核心组件,不仅提供类似于 pip 的包管理功能,便于安装、更新、卸载各种软件包,还实现了环境管理,使得用户能够轻松创建、激活、切换不同 Python 版本及依赖环境,解决了多版本共存和项目隔离问题。

2024-04-13 14:48:10 3399 1

原创 2024最新 yolov5 环境配置详细教程

在深度学习领域,计算机视觉技术的发展日新月异,不断推动着图像识别、目标检测等应用的革新与进步。作为这一领域极具影响力的框架之一,YOLOv5以其卓越的速度、准确性和易用性,成为了众多开发者和研究者进行实时目标检测任务的首选工具。尤其是其基于PyTorch实现的简洁架构,不仅便于理解和修改,还能够无缝对接Python丰富的生态系统,进一步提升了开发效率与灵活性。然而,面对YOLOv5与Python环境的搭建,初学者往往面临诸多挑战:如何高效配置依赖环境?如何确保兼容性强、性能优的硬件加速支持?

2024-04-12 17:08:02 5121 7

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除