数据分析—学术前沿趋势分析—task2 论文作者统计

本文介绍了如何使用Pandas和Python字符串处理技术进行论文作者的统计分析。通过读取arxiv数据集,处理作者姓名,统计作者出现频率Top10,以及姓氏和首字母的出现频率。利用matplotlib绘制了直方图展示结果,包括作者名字、姓氏和首字母的分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 任务说明

  • 任务主题:论文作者统计,统计所有论文作者出现评率Top10的姓名;
  • 任务内容:论文作者的统计、使用 Pandas 读取数据并使用字符串操作;
  • 任务成果:学习 Pandas 的字符串操作;

2 技术要点

2.1 作者姓名处理

在原始arxiv数据集中论文作者authors字段是一个字符串格式,其中每个作者使用逗号进行分隔分,所以我们我们首先需要完成以下步骤:

  • 使用逗号对作者进行切分;
  • 剔除单个作者中非常规的字符;

具体操作可以参考以下例子:

C. Bal\\'azs, E. L. Berger, P. M. Nadolsky, C.-P. Yuan

# 切分为,其中\\为转义符

C. Ba'lazs
E. L. Berger
P. M. Nadolsky
C.-P. Yuan

当然在原始数据集中authors_parsed字段已经帮我们处理好了作者信息,可以直接使用该字段完成后续统计。

2.2 字符串处理

在Python中字符串是最常用的数据类型,可以使用引号('或")来创建字符串。Python中所有的字符都使用字符串存储,可以使用方括号来截取字符串,如下实例:

var1 = 'Hello Datawhale!'
var2 = "Python Everwhere!"
 
print("var1[-10:]: ", var1[-10:])
print("var2[1:5]: ", var2[0:7])

执行结果为:

var1[-10:]:  Datawhale!
var2[1:5]:  Python 

同时在Python中还支持转义符:

(在行尾时)续行符
\反斜杠符号
单引号
"双引号
\n换行
\t横向制表符
\r回车

Python中还内置了很多内置函数,非常方便使用:

方法描述
string.capitalize()把字符串的第一个字符大写
string.isalpha()如果 string 至少有一个字符并且所有字符都是字母则返回 True,否则返回 False
string.title()返回"标题化"的 string,就是说所有单词都是以大写开始,其余字母均为小写(见 istitle())
string.upper()转换 string 中的小写字母为大写

3 具体代码实现以及讲解

3.1 数据读取

具体方法与上一篇文章中一样
首先建立环境:

# 导入所需的package
import seaborn as sns #用于画图
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import json #读取数据,我们的数据为json格式的
import pandas as pd #数据处理,数据分析
import matplotlib.pyplot as plt #画图工具

建立一个函数readArxivFile,用来读取特定列的数据,以免读取过多不必要的数据导致内存占用过大,定义读取文件的函数
path: 文件路径
columns: 需要选择的列
count: 读取行数

def readArxivFile(path, columns=['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi',
       'report-no', 'categories', 'license', 'abstract', 'versions',
       'update_date', 'authors_parsed'], count=None):

    data  = []
    with open(path, 'r') as f: 
        for idx, line in enumerate(f): 
            if idx == count:
                break
                
            d = json.loads(line)
            d = {col : d[col] for col in columns}
            data.append(d)

    data = pd.DataFrame(data)
    return data

# authors_parsed 是已经帮我们处理好的作者名字
data = readArxivFile('arxiv-metadata-oai-snapshot.json', ['id', 'authors', 'categories', 'authors_parsed'],100000)

3.2 数据统计

接下来我们将完成以下统计操作:

  • 统计所有作者姓名出现频率的Top10;
  • 统计所有作者姓(姓名最后一个单词)的出现频率的Top10;
  • 统计所有作者姓第一个字符的评率;

为了节约计算时间,下面选择计算机科学中cs.CV的论文进行处理:

这里的lambda是用来定义一个匿名函数,表达更为精简
这里的apply作用是将后面的函数用在前面的data里面

# 选择类别为cs.CV下面的论文
data2 = data[data['categories'].apply(lambda x: 'cs.CV' in x)]

# 拼接所有作者
all_authors = sum(data2['authors_parsed'], [])

在这里插入图片描述
处理完成后all_authors`变成了所有一个list,其中每个元素为一个作者的姓名。我们首先来完成姓名频率的统计。将list中作者的姓名拼在一起

用到' '.join(x),意思是用空格链接姓与名,并且将list转化成dataframe格式

# 拼接所有的作者
authors_names = [' '.join(x) for x in all_authors]
authors_names = pd.DataFrame(authors_names)

在这里插入图片描述

3.3 图像绘制

1、首先绘制上面得到的前十名的作者名字

# 根据作者频率绘制直方图
plt.figure(figsize=(10, 6))
authors_names[0].value_counts().head(10).plot(kind='barh')

# 修改图配置
names = authors_names[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')

绘制得到的结果:
在这里插入图片描述
2、接下来统计作者姓,也就是authors_parsed字段中作者第一个单词:

authors_lastnames = [x[0] for x in all_authors]
authors_lastnames = pd.DataFrame(authors_lastnames)

plt.figure(figsize=(10, 6))
authors_lastnames[0].value_counts().head(30).plot(kind='barh')

plt.ylabel('姓氏')
plt.xlabel('Count')

绘制得到的结果,其中Yu FENG JIANG CHEN 等为华人姓氏
在这里插入图片描述

2、接下来统计作者首字母,也就是authors_parsed字段中作者第一个字母

authors_lastnames = [x[0] for x in all_authors]
authors_firstword = [x[0] for x in authors_lastnames]
authors_firstword = pd.DataFrame(authors_firstword)
authors_firstword

plt.figure(figsize=(10, 6))
authors_firstword[0].value_counts().head(30).plot(kind='barh')

#names = authors_lastnames[0].value_counts().index.values[:30]
#_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('首字母')
plt.xlabel('Count')

结果如下所示,这里只出现了23个字母,并且没有出现Q U Z
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铁川

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值