题目
王强今天很开心,公司发给N元的年终奖。王强决定把年终奖用于购物,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 | 附件 |
---|---|
电脑 | 打印机,扫描仪 |
书柜 | 图书 |
书桌 | 台灯,文具 |
工作椅 | 无 |
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 0 个、 1 个或 2 个附件。附件不再有从属于自己的附件。王强想买的东西很多,为了不超出预算,他把每件物品规定了一个重要度,分为 5 等:用整数 1 ~ 5 表示,第 5 等最重要。他还从因特网上查到了每件物品的价格(都是 10 元的整数倍)。他希望在不超过 N 元(可以等于 N 元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第 j 件物品的价格为 v[j] ,重要度为 w[j] ,共选中了 k 件物品,编号依次为 j1, j2,……, j k ,则所求的总和为:
v[ j1 ]*w[ j1 ]+v[ j2 ]*w[ j2]+ … +v[jk ]*w[j k ] 。(其中 * 为乘号)
请你帮助王强设计一个满足要求的购物单。
输入描述:
输入的第 1 行,为两个正整数,用一个空格隔开:N m
(其中 N ( <32000 )表示总钱数, m ( <60 )为希望购买物品的个数。)
从第 2 行到第 m+1 行,第 j 行给出了编号为 j-1 的物品的基本数据,每行有 3 个非负整数 v p q
(其中 v 表示该物品的价格( v<10000 ), p 表示该物品的重要度( 1 ~ 5 ), q 表示该物品是主件还是附件。如果 q=0 ,表示该物品为主件,如果 q>0 ,表示该物品为附件, q 是所属主件的编号)
输出描述:
输出文件只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值( <200000 )。
示例1
输入:
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出:
2200
思路
该题是背包问题的变种,背包问题中状态转移方程为F(i, j) =max(F(i - 1, j),F(i - 1, j - w) + value)
,其中j >= w
,否则F(i, j) = F(i - 1, j)
。
关键在于附件购买的考虑。
附件只有三种可能:0个、1个、2个。附件不再单独考虑,而是在遍历主件的时候,把可能有的四种情况全部考虑:
1.仅仅购买主件
2.购买主件和附件1
3.购买主件和附件2
4.购买主件和附件1和附件2
即,如果第 i 个物品是附件,直接由上一个物品转移过来,跳过。如果第 i 个物品为主件,则考虑全部可能出现的情况,取可能出现的情况的最大值。
实现
import java.util.*;
public class Main{
private static class Good{
int v;//价格
int p;//物品重要程度
int q;//物品所属主键ID
int a1 = 0;//附件1ID
int a2 = 0;//附件2ID
public Good(int v,int p,int q){
this.v = v;
this.p = p;
this.q = q;
}
}
public static void main(String[] args){
Scanner in = new Scanner(System.in);
int allMoney = in.nextInt() / 10;
int num = in.nextInt();
Good[] goods = new Good[num+1];
for(int i=1;i<num+1;i++){
//除以10节省空间
int v = in.nextInt() / 10;
int p = in.nextInt();
int q = in.nextInt();
goods[i] = new Good(v,p,q);
}
//有可能附件比主件更早出现,所以要用两次遍历,不然会出现空指针异常
for(int i=1;i<num+1;i++){
int q = goods[i].q;
if(q > 0){
if (goods[q].a1 == 0)
goods[q].a1 = i;
else
goods[q].a2 = i;
}
}
int[][] dp = new int[num+1][allMoney+1];
for(int i = 1;i<num+1;i++){
int v1 = 0,v2 = 0,v3 = 0,v4 = 0;
int dp1 = 0,dp2 = 0,dp3 = 0,dp4 = 0;
v1 = goods[i].v;
dp1 = v1*goods[i].p;
//接下来时可能出现的四种情况
if(goods[i].a1!=0){
v2 = v1 + goods[goods[i].a1].v;
dp2 = dp1 + goods[goods[i].a1].v*goods[goods[i].a1].p;
}
if(goods[i].a2!=0){
v3 = v1 + goods[goods[i].a2].v;
dp3 = dp1 + goods[goods[i].a2].v*goods[goods[i].a2].p;
}
if(goods[i].a1!=0&&goods[i].a2!=0){//主件加附件1和附件2
v4 = v2 + v3 - v1;
dp4 = dp2 + dp3 - dp1;
}
for(int j=1;j<allMoney+1;j++){
//如果是附件由上一个物品转移,直接跳过
if(goods[i].q > 0){
dp[i][j] = dp[i-1][j];
}else{
//如果是主件,把可能出现的情况都考虑,取最大值
dp[i][j] = dp[i-1][j];
if(j>=v1 && v1 != 0)
dp[i][j] = Math.max(dp[i][j],dp[i-1][j-v1]+dp1);
if(j>=v2 && v2 != 0)
dp[i][j] = Math.max(dp[i][j],dp[i-1][j-v2]+dp2);
if(j>=v3 && v3 != 0)
dp[i][j] = Math.max(dp[i][j],dp[i-1][j-v3]+dp3);
if(j>=v4 && v4 != 0)
dp[i][j] = Math.max(dp[i][j],dp[i-1][j-v4]+dp4);
}
}
}
System.out.println(dp[num][allMoney] * 10);
}
}