题目描述:
给定一棵n个点的树,其中1号结点是根,每个结点要么是黑色要么是白色
现在小Bo和小Biao要进行博弈,他们两轮流操作,每次选择一个黑色的结点将它变白,之后可以选择任意多个(可以不选)该点的祖先(不包含自己),然后将这些点的颜色翻转,不能进行操作的人输
由于小Bo猜拳经常输给小Biao,他想在这个游戏上扳回一城,现在他想问你给定了一个初始局面,是先手必胜还是后手必胜
输入
第一行一个正整数n
第二行n个整数w1..wn,wi∈{0,1},wi=1表示第i个结点一开始是黑点,否则是白点
接下来n−1行,每行两个正整数u,v表示一条树边(u,v)1≤n≤1000
输出
如果先手必胜,输出First ,否则输出Second
题解:先手存在一个必败态,就是当每一层的黑色结点数都为偶数时,先手必败。
AC代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
using namespace std;
#define io ios::sync_with_stdio(0),cin.tie(0)
#define inf 0x3f3f3f
const int mod=1e9+7;
const int maxn=1e3+7;
vector <int> e[maxn];
int n,ans,deeps;
int a[maxn],vis[maxn];
void dfs(int u,int f,int deep)
{
deeps=max(deeps,deep);
for(int i=0;i<e[u].size();i++)
{
int v=e[u][i];
if(v!=f)
dfs(v,u,deep+1);
}
if(a[u]==1)
vis[deep]++;
}
int main()
{
io;
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=1;i<n;i++)
{
int st,en;
cin>>st>>en;
e[st].push_back(en);
e[en].push_back(st);
}
dfs(1,0,0);
for(int i=0;i<=deeps;i++)
{
if(vis[i]%2==1)
{
cout<<"First"<<endl;
return 0;
}
}
cout<<"Second"<<endl;
return 0;
}
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
using namespace std;
#define io ios::sync_with_stdio(0),cin.tie(0)
#define inf 0x3f3f3f
const int mod=1e9+7;
const int maxn=1e3+7;
vector <int> e[maxn];
int n,ans;
int a[maxn],vis[maxn];
void dfs(int u,int f,int deep)
{
for(int i=0;i<e[u].size();i++)
{
int v=e[u][i];
if(v!=f)
dfs(v,u,deep+1);
}
if(a[u])
{
vis[deep]++;
if(vis[deep]%2==0)
ans++;
else
ans--;
}
}
int main()
{
io;
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=1;i<n;i++)
{
int u,v;
cin>>u>>v;
e[u].push_back(v);
e[v].push_back(u);
}
dfs(1,0,0);
if(ans!=0)
cout<<"First"<<endl;
else
cout<<"Second"<<endl;
return 0;
}