枚举与剪枝算法学习笔记

本文介绍了一种改进暴力破解算法的方法——枚举与剪枝算法。该算法通过提前排除不符合逻辑的数据,减少不必要的计算分支,从而显著提高计算效率。以寻找特定数学性质的整数为例,展示了如何通过观察数字特征进行剪枝。
摘要由CSDN通过智能技术生成

在上一篇暴力破解算法中,只适合处理数据不是太多,计算量不大的情况。若计算量很大,计算机会执行很长的时间。

 

而枚举与剪枝算法是指在暴力破解前,通过条件判断来过滤一些逻辑上不符合要求的数据。减去一些无意义的运算分支,来减少计算量,提高效率。

 

例:

/*
 100-1000中 找出平方之后的尾数还是本身的整数
*/

public class T2
{
	public static void main(String[] args)
	{		
		for(int i=100; i<1000; i++){             //暴力破解
			if(i*i % 1000==i) System.out.println(i + "," + i*i);
		}
	}
}



 


 

/*
 100-1000中 找出平方之后的尾数还是本身的整数
*/

public class T2
{
	public static void main(String[] args)
	{
		
		for(int i=100; i<1000; i++){
			// 仔细观察   这样的数字的尾数有什么特征? 0 1 5 6
			// 进一步,其末尾2位数必须是 25 76
			// 更进一步,其末尾3位数必须是?。。。。
                           if(...) 剪枝动作
			if(i*i % 1000==i) System.out.println(i + "," + i*i);
		}
	}
}


 



 

以下是一个简单的枚举剪枝算法的代码示例: ``` #include <iostream> using namespace std; const int N = 10; int n, ans; bool used[N]; void dfs(int u, int sum) { if (u == n + 1) { ans = max(ans, sum); return; } for (int i = 1; i <= n; i++) { if (!used[i]) { used[i] = true; dfs(u + 1, sum + i); used[i] = false; } } } int main() { cin >> n; dfs(1, 0); cout << ans << endl; return 0; } ``` 这个代码实现了一个简单的枚举剪枝算法,用于求解从1到n的n个数的排列中,所有排列中数字之和的最大值。具体实现思路如下: 1. 定义一个used数组,用于记录某个数字是否已经被使用过。 2. 定义一个dfs函数,用于进行深度优先搜索。函数传入两个参数,一个是当前搜索到的位置u,另一个是当前已经搜索到的数字之和sum。 3. 在dfs函数中,如果当前搜索到的位置u已经超过了n+1,说明已经搜索完了所有数字,此时更新答案ans,并返回。 4. 在dfs函数中,遍历1到n的所有数字,如果某个数字i没有被使用过,则将其标记为已使用(即将used[i]设为true),并进行下一层搜索(即调用dfs函数,传入参数u+1和sum+i)。 5. 在dfs函数中,搜索完一个数字后,需要将其标记为未使用(即将used[i]设为false)。 在这个算法中,使用了枚举剪枝的思想,即在搜索过程中,记录已经搜索到的数字之和,如果已经搜索到的数字之和超过了当前最优解,就可以直接返回,减少搜索时间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值