原来的牛顿求平方根法如下:
(define (sqrt-iter guess x)
(if (good-enough? guess x)
guess
(sqrt-iter (improve guess x)
x)))
(define (improve guess x)
(average guess (/ x guess)))
(define (average x y)
(/ (+ x y) 2))
(define (good-enough? guess x)
(< (abs(-(square guess) x)) 0.001 ))
(define (square x)(* x x))
(define (sqrt x)
(sqrt-iter 1.0 x))
这个算法的缺点是:对于较小的数,差别为0.001精度不够,比如求0.0001的平方根得约为0.03。对于较大的数精度过于高。
因此将采取一种新的方式改善 good-enough?函数
策略如下:监视猜测值从一次迭代到下一次的变化情况,当改变值相对于猜测值的比率很小时就结束工作。
改变值相对于猜测值的比率很小等同为,下一次猜测值和这次的猜测值几乎一样大。
由于下一次的猜测值可能变大也可能变小,于是将比值限定在 0.999-1.001中
代码如下:
(define (sqrt-iter guess x)
(if (good-enough? guess x)
guess
(sqrt-iter (improve guess x)
x)))
(define (improve guess x)
(average guess (/ x guess)))
(define (average x y)
(/ (+ x y) 2))
(define (good-enough? guess x)
(and (<(/ (improve guess x) guess) 1.001)
(>(/ (improve guess x) guess) 0.999)))
(define (square x)(* x x))
(define (sqrt x)
(sqrt-iter 1.0 x))
测试结果:
1 ]=> (sqrt 1000000)
;Value: 1000.5538710539447
1 ]=>
1 ]=> (sqrt 0.000001)
;Value: 1.0005538710539446e-3
1 ]=>