PyTorch GPU版本离线安装

1.查看显卡信息

(1)打开Nvidia控制面板,查看显卡信息

2.cuda安装

2.1 选择cuda版本

根据显卡信息查询要下载的cuda版本,https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

2.2 下载cuda

1.打开cuda官网:https://developer.nvidia.com/cuda-toolkit-archive

2.下载cuda

3.cuda安装

 (1)双击离线安装包,进入安装界面。

 (2)选择自定义安装

按默认选项,点击下一步,安装完成。

cuda的环境变量会自动进行配置。

(3)查看是否安装成功

打开cmd窗口,输入nvcc -V,查看cuda版本信息,安装成功。

 

 3.cuDNN安装

cuda安装完成后,需要下载对应的cuDNN。

下载对应版本的cudnn链接:https://developer.nvidia.com/rdp/cudnn-archive

 需要填写登录信息

 下载完成后

分别将cuda/include、cuda/lib、cuda/bin三个目录中的内容拷贝到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1对应的include、lib、bin目录下。

注意:不是替换文件夹,二是将文件放入对应的文件夹中。

配置环境变量

此电脑--->高级系统设置--->环境变量--->系统变量--->path--->编辑--->新建

添加环境变量C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\lib\x64

4.PyTorch安装

https://download.pytorch.org/whl/torch_stable.html

下载对应的pytorch版本

pytorch官网查看pytorch和torchvision的关系。

 下载torchvision

 5.测试PyTorch安装成功

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值