我知道你想告诉我……

我知道你想告诉我…… 

  “可可,飞哪去了?”

  “嘿!麻麻我在这儿!”

  “小淘气,就知道乱飞。好在现在翅膀还不硬,是不是等你真正长大了,就飞远了不要妈妈啦?”

  “妈妈,才不是呢。”

 

   是在两年前。

   那段时间,天气还不十分燥热,树叶沙沙的舞弄着,阳光跳动在阴凉的土地上。鸟妈妈安静地躺在巢里,等待着一个小生命的降临。小窝里透着股融洽的气息,风暖暖的,轻轻地吹起鸟妈妈的羽毛,却吹不散鸟妈妈内心的焦急等待。还是树影婆娑。

   突然,啪嚓一声,壳裂开了。一个小脑袋从里面试探了几下便出来了,花脑袋,又配着几绺黄色的明亮的羽毛,小眼睛发着光,肆意地窥探着这世界的一切,真是可爱极了。鸟妈妈欣喜地看着自己的小宝贝,思量着这个小可爱该有个怎么样的可爱的名字——bingo!既然这么可爱,就叫可可吧。

   从此,世界上又多了只叫可可的小文鸟。

 

   阳光和树叶玩着躲猫猫,树影婆娑在炎热里的阴凉一角。可可和小伙伴们开心地嬉闹着,丛林间不时传出些嘻嘻哈哈的笑声,正如所有动漫里的那样,蓝天白云草坪绿树清泉,还有快乐。

   但暴风雨总是藏在阳光之后。突然便下起了雨,来得那么措手不及。小可可的羽毛一会便变得又湿又重了,越飞越低,快要跟不上鸟群们的队伍了。可可绝望的看着前面慌乱的鸟群,无助地呼唤着妈妈,却只剩风雨声在摇曳。

   不多会,可可便趴在泥水里了,任凭雨水侵打着自己,世界眯成了一条缝后便消失了。昏昏沉沉好长一会,可可模模糊糊听见耳边似乎有声音在一直重复呼唤着自己,过了良久才听清,这是妈妈呀,是妈妈来接自己回家了。

   夏天的雨就是来得急走得快,这会便雨过天晴见彩虹了,一弯恰好从丛林这头架到那头,通着可可的家。被骤雨洗过的丛林,明朗,清凉,快乐,还隐约可看见草丛深处冒出些白雾,便越发像个仙境了。叶子上带着雨珠,折射着一轮轮彩虹,可可和妈妈穿梭其中,回到了鸟世界的美好国度。

   雨停了,一切依旧美好。

 

   又是奇妙的一天,可可长大了,可以去上学了。

   这是可可梦寐以求的一天,可可的世界又大了些,也许,以后的日子里可可会跑得更远些,却与妈妈在一起的时间越来越少了。

   刚开始的时候,可可还会想念妈妈,时不时的回家看看,给妈妈讲学校发生的各种好玩的事情,告诉妈妈自己的前桌多胖,后桌多幽默,同桌又是多可爱,告诉妈妈班里的班长是白白胖胖,团支是淡定姐,学委又是多好玩,还要告诉妈妈自己的闺蜜是黑一点呢还是白一点,是胖一点呢还是瘦一点,是严肃一点呢还是逗比一点。

   可可甚至一到家里就没日没夜的说,将每一天都复述给妈妈听,生怕忘了一点。甚至有时候还要说上好多遍,直到妈妈睡着,这尖尖的喙才会暂歇,妈妈会说可可不像只文鸟,倒更像是只叽叽喳喳的麻雀。可可就只顾着说,笑着告诉妈妈可可生下来就是为了烦妈妈的,就是为了不让妈妈感到孤单的。这会便只剩下可可与妈妈的笑了。

 

   再过几天就是母亲节了,可可还小,不知道究竟该送些什么好,不知道可以买康乃馨,可以买形形色色的礼物。只是,可可从本子上撕下了一张纸,把不齐的边裁去,把卷起的角也展平。可可拿起手中的铅笔,用孩子的笔体写下“节日快乐,妈妈我爱你”,歪歪扭扭,甚至“爱”字还是刚从同学那问到的怎么写。

   可可又从大姐姐那学会了怎么折成一颗心,将早已撕得歪歪扭扭的纸折成了一颗歪歪扭扭的心,同学说是歪瓜裂枣,但可可相信,妈妈一定会喜欢。

   终于到了母亲节这天,可可早早的爬起来,想去悄悄把信放到妈妈枕边,结果一不小心妈妈便醒了。妈妈看着刚放的枕边的信,早已被小爪子攥的想起了毛边的卫生纸一般。妈妈拿起来,甚至还能感受到可可的体温,小心翼翼的展开,九个字便映入了眼帘。

   一瞬间,妈妈的眼角湿了。

 

   可可又长大了些,要去更远的地方求学。可可哭着问妈妈,可以不去吗,妈妈笑着摇摇头。是妈妈告诉可可——鸟注定是要飞出妈妈的世界的,越飞越远,妈妈却是会老的,越飞越近,外面的世界才更精彩,不要想妈妈,飞吧,大胆地飞吧……

   可可飞走了,带着妈妈新准备的各种东西,磨磨蹭蹭地飞走了。可可不敢回头,妈妈却在背后哭了。可可飞了好远好远,终于飞到了目的地。刚开始可可会特别特别想妈妈,会在晚上看着远处的天偷偷抹眼泪。可可的同学都待她很好,她渐渐的和同学玩到了一起。

   日子愈来愈久,可可会偶然回次家,但大多数时间都是在学校度过的。后来,可可也不怎么联系妈妈了,每周甚至都只打一次电话,妈妈打电话来时还会以各种借口解释没打电话的原因。可可也不再什么事情都讲给妈妈听了,也许有时候,有那么一瞬间可会突然想把什么事情告诉妈妈,可时间久了也便忘了。再到后来,可可竟然只有在经济上需要妈妈时才会回家。再后来,可可便不回家了,只是直接打个电话说明需求。也许电话那头的妈妈会伤心的吧。但可可再也感觉不到了。

 

   很快的,是妈妈的生日了。可可却不再写动人的信给妈妈给妈妈了,却只是去了精品店随手买了件礼物包装好送给了妈妈。大概这时候可可都不在意了吧,但无论如何,妈妈还是笑得很开心,甚至比以前都更加幸福了。这时候,却是可可悄悄哭了。

   可可像是突然惊醒了一般,又懂得些什么。可可突然想到了好多好多事情,想到了和妈妈在以前的往事,可这些事,年代都太久远。可可这才意识到,是有多久她没有爱过妈妈。可妈妈,还是一如继往的爱着可可。

   可可哭了,哭得很伤心,真的是个做错事的孩子。

   妈妈却也哭了:“我知道你想告诉我你爱我。但孩子,不要哭,爱是不需要说出口的,不管走到多远,记得妈妈就好,没事就给妈妈打个电话或者发个短信,妈妈知道可可是爱妈妈的。”

 

   经历了很多,可可终于长大了。

   

   故事很短,人生很长。

   也许事实上,我,或你,或他,都在上演着可可的角色。

   父母是宽容的,我们是需要长大的。

   我爱我的妈妈,我的爸爸,我的家人。

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值