车辆装载率优化算法

文章介绍了如何使用贪心算法和模拟退火算法解决集装箱装载率优化问题。首先,给出了一个简单的贪心算法,按体积从大到小排序货物并尝试放置。接着,详细解释了模拟退火算法的实现,通过不断交换物品位置并依据温度决定是否接受新解,以寻找更优装载方案。该问题属于NP难问题,这些算法可提供近似解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

车辆装载率优化算法

帮我做一个集装箱装载率优化算法,有如下条件:货物装载不能超过集装箱长宽高,货物是立方体,货物只能正放,不能倒放,货物可以摆放多层,但是某些大体积的货物只能摆放下层,需要装载更多的货物。请给出详细的代码实现,以及详细的算法介绍。

这是一个NP难问题,需要用到启发式算法来解决。下面是一个简单的贪心算法,它可以用来近似地解决集装箱装载率优化问题。

算法步骤:

将货物按体积从大到小排序。
对于每件货物,从底部开始往上放置,直到无法再放为止。
如果有货物无法放置在当前层,将其放到下一层,重复步骤2。
直到所有货物都被放置。
代码实现:

贪心算法

class Item:
    def __init__(self, id, w, h, d):
        self.id = id
        self.w = w
        self.h = h
        self.d = d
        
class Container:
    def __init__(self, w, h, d):
        self.w = w
        self.h = h
        self.d = d
        self.items = []
        self.current_w = 0
        self.current_h = 0
        self.current_d = 0
    
    def add_item(self, item):
        if self.current_w + item.w > self.w or \
           self.current_h + item.h > self.h or \
           self.current_d + item.d > self.d:
            return False
        self.items.append(item)
        self.current_w += item.w
        self.current_h += item.h
        self.current_d += item.d
        return True
        
def optimize(items, container):
    items.sort(key=lambda x: x.w * x.h * x.d, reverse=True)
    for item in items:
        if not container.add_item(item):
            container.current_w = 0
            container.current_h = 0
            container.current_d = 0
            if not container.add_item(item):
                raise ValueError("Item is too large for the container.")
    return container.items

这个算法的时间复杂度是 O ( n 2 )

数学建模题目 货物在货车中的装载方案是否合理会直接影响到铁路运输的效率和效益,因此,铁路货运工作人员都期望能够实现“巧装满载”,即在铁路货车中尽可能多的装载货物,使其接近或达到车辆的标记载重或者有效容积。其中,棚车(有侧墙、端墙和顶墙)装载成件包装货物(通常带有包装,成件运输和保管的货物)最具代表性,但由于棚车车门在车辆一侧的中间,同时为了保障在装载过程中不偏重和偏载,货物需要从两端向中间装载。 假定货物在装载时可以倒置、翻转,且不考虑装卸机械的影响,请你们查阅相关资料,研究如下问题: (1)对于相同规格的长方体货物,试建立确定棚车最优装载方案的数学模型; (2)假定有一批长方体货物,每件重70kg,包装规格为930mm×450mm×370mm,试利用所建立的数学模型分别确定一辆P62N型棚车和一辆P70型棚车(尺寸见表1)可装载此种货物的件数,并给出两种棚车端部和中部的装载方案; (3)对于规格不统一的成件包装货物,试构建确定棚车最优装载方案的数学模型。 摘要 对于问题一,我们引入了George & Robinson算法中关于层的概念,分析单件长方体货物在棚车中的装载方式,并以此为基础,研究一层内长方体货物的装载情况。为实现最优装载,在满足货物尺寸、车辆尺寸等限制条件的前提下,我们列出了车辆端部和中部的目标函数与约束条件,最终得到最优的装载方案。 对于问题二,我们依据题目中所给的P62N和P70棚车的相关数据,结合问题一中的得到的长方体货物最优装载模型,运用lingo软件进行计算,最终得到P62N和P70的货物最优装载件数。其装载利用率均在87%以上。 对于问题三,我们首先分析了成件包装货物的种类,将成件包装货物分为长方体货物和非长方体货物两大类,然后运用与问题一相似的优化思想及其方法,构建出规格不统一情况下,棚车最优装载方案的数学模型。 关键词: 棚车装载优化 成件包装货物 铁路货运
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值