算法设计8.3

题目:

吝啬SAT问题是这样的:给定一组子句(每个子句都是其中文字的析取)和整数k,求一个最多有k个变量为true的满足赋值——如果该赋值存在。证明吝啬SAT是NP-完全问题。

解答:

首先我们要证明吝啬SAT问题是np-完全问题,我们首先要证明吝啬SAT问题是np问题,然后如果能把SAT问题规约到吝啬SAT问题,那么我们就能证明这个问题。

  1. 证明吝啬SAT问题为NP问题。 
    若已知某个与吝啬SAT问题变量对应的真值集合,可在多项式时间内将该集合带入吝啬SAT问题验证是否为解。故吝啬SAT问题为NP问题。

  2. 证明吝啬SAT为NP-完全问题。 
    SAT -> 吝啬SAT 
    令SAT问题中变量个数为k即得到吝啬SAT问题,此归约过程需要多项式时间。又因为SAT问题为已知的NP-完全问题,则吝啬SAT问题亦为NP-完全问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值