PLUS模型

PLUS模型预测未来土地利用步骤

准备工作

注意:所有土地利用数据行列号需一致,坐标系需一致,最好使用WGS-84坐标系,影响因子行列号对齐不做要求。文件名称和路径不能出现中文!!!
操作方法:
1、提取一期研究区土地利用数据,例如:2020年的。
2、提取2010年和2000年土地利用数据。按掩膜提取—环境设置—处理范围—捕捉栅格,这里选择2020年土地利用数据
在这里插入图片描述

PLUS模型运行

  1. 数据转换 ,Data Processing–Comvert LULCs to…;
    在这里插入图片描述当出现Finish说明转化成功,数据会带有“_uc”的后缀。之后的在PLUS过程中都应该运用该数据

  2. 提取土地利用扩张模块,PLUS——E L E在这里插入图片描述
    输入土地利用数据,land expansion:输出路径和文件名,Convert:运行
    在这里插入图片描述

  3. 获取各用地发展概率及贡献率在这里插入图片描述
    在这里插入图片描述

  4. 限制区制作。限制区一般是自然保护区或者开放性湖泊。
    1)研究区自然保护区和湖泊数据剪裁
    2)删掉保护区和湖泊多余字段,两个数据各添加一个字段,命名一致,赋值一致。这里本人添加的字段名叫“A”,都赋值为“0”
    3)研究区矢量数据也添加一个字段“A”,这里赋值为“1”,这里需要融合处理,得到研究区整体边界数据,内部的行政区划边界不要。
    融合后的边界数据

3)保护区数据和湖泊数据合并。地理处理——合并,输入合并数据,设置输出路径,其他不变。
4)合并后的数据包括很多个面,这里进行融合,变成1个面。地理处理——融合,融合字段选择“A”。
5)擦除研究区矢量数据中的自然保护区和湖泊数据。直接搜索擦除,输入要素选择研究区矢量数据,擦除数据选择第4步生成的数据。属性表
7)转为栅格,字段选“A”,就得到限制数据,这里注意行列号要和LULC数据一致
8)数据转换,参考“准备工作”。

  1. CARS;
    Land use pattern :当前LULC;Development potential:第3步生成的结果;Conversion constraint:限制要素,第4步生成结果。
    在这里插入图片描述

Land Demands:需要输入未来LULC的栅格个数(F A 1),S A不需要输入

在这里插入图片描述
Transition Matrix:转移矩阵。1表示可以转移,0表示不能转移。根据具体情境设置。
在这里插入图片描述
Neighborhood Weights:邻域权重,可参考相关文献,也可以根据各用地类型扩张面积计算。
在这里插入图片描述
也可以这样计算权重
在这里插入图片描述

Color设置颜色。

  1. 精度验证
    G T:2020年真实土地利用数据
    S r:第5步模拟的2020年土地利用数据
    Sampling rate:采样率
    I M:2010年真实土地利用数据
    Caculate 计算。
    在这里插入图片描述
    Kappa Coefficient>0.75就可以了
    Overall Accuracy:整体精度,>0.75
    在这里插入图片描述
    FoM精度
    在这里插入图片描述
    注意:参数需要不断调试,没有固定的值。
### 使用 MATLAB 实现 Aspen Plus 模型 为了实现 Aspen Plus 和 MATLAB 的接口,可以通过以下方式完成数据的双向交换并利用 MATLAB 进行优化和数据分析。此过程涉及几个关键步骤: #### 设置 Aspen Plus 模型 在 Aspen Plus 中建立所需的工艺流程模型,并配置好输入参数以及期望得到的结果。 #### 导出数据至 MATLAB 使用 AsPEN Plus 提供的数据导出功能将所需变量保存为 CSV 或 Excel 文件格式,以便后续可以在 MATLAB 中加载这些文件[^2]。 #### 数据导入与预处理 (MATLAB端) ```matlab % 加载来自Aspen Plus的数据 data = readtable('aspen_output.csv'); disp(data); ``` #### 调用优化算法或其他分析工具 一旦数据被成功引入到 MATLAB 工作空间内,就可以应用各种内置函数库来进行进一步的操作,比如线性规划(LP),混合整数非线性编程(MINLP)等。 #### 将结果返回给 Aspen Plus 验证 经过计算得出的新设定值或者其他形式的信息应当重新写回到原始位置,即更新后的表格再次上传回软件平台以评估其性能改进情况。 下面给出一段简单的例子展示如何连接两者之间的工作流: ```matlab function aspen_matlab_interface() % Load data from ASPEN PLUS output file into MATLAB table structure. filename = 'path_to_your_aspen_export_file'; % Read the exported data using appropriate function based on filetype (.csv,.xls etc.) if endsWith(filename, '.csv') T = readtable(filename); elseif endsWith(filename, '.xlsx') || endsWith(filename, '.xls') T = readtable(filename,'Sheet',1); end % Perform some operations with this dataset within MATLAB environment... optimized_results = perform_optimization(T); % Placeholder for actual optimization logic % Write back results to another spreadsheet that can be imported by ASPEN again later. writetable(optimized_results, 'output_for_aspen.xlsx'); end function opt_res = perform_optimization(input_data) % Implement your custom optimization routine here. % This is just a placeholder implementation showing how you might call an optimizer like fmincon(). options = optimoptions('fmincon','Display','iter'); x0 = ones(size(input_data.VarOfInterest)); % Initial guess vector same size as variable of interest column in input_data A = []; b = []; Aeq = []; beq = []; lb = zeros(length(x0),1); ub = inf*ones(length(x0),1); nonlcon = @(x)deal([],[]); objfun = @(x)-sum((input_data.TargetValue - feval(@your_model_function,x)).^2); % Minimize squared error between target and model prediction at each point given parameters x [optimal_params,fval] = fmincon(objfun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options); % Store optimal parameter set along with any other relevant info about solution quality or statistics. opt_res.OptimizedParams = num2cell(optimal_params.'); opt_res.FinalObjectiveFunctionValue = fval; end ``` 这段代码展示了基本框架,实际项目可能还需要考虑更多细节,例如错误处理机制、更复杂的约束条件定义或是特定领域内的特殊需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值