seaboat的专栏——a free boat on the sea.

思想自由,技术自由

我的开源项目汇总(机器&深度学习、NLP、网络IO、AIML、mysql协议、chatbot)

TextAnalyzer https://github.com/sea-boat/TextAnalyzer A text analyzer which is based on machine learning,statistics and dictionaries that can analy...

2018-07-12 08:39:05

阅读数:813

评论数:2

Tomcat内核、集群、参数及性能

主题简介: 内核实现原理 分布式集群 生产部署关键参数 性能监控和分析 一、内核实现原理 HTTP Web服务器与浏览器之间以HTTP协议通信,浏览器要访问服务器即向服务器发送HTTP请求报文。 如图,此处用get方法访问了localhost的8080端口的Web、Index、...

2018-01-24 10:34:54

阅读数:1384

评论数:0

如何用TensorFlow训练聊天机器人(附github)

前言实际工程中很少有直接用深度学习实现端对端的聊天机器人,但这里我们来看看怎么用深度学习的seq2seq模型来实现一个简易的聊天机器人。这篇文章将尝试使用TensorFlow来训练一个基于seq2seq的聊天机器人,实现根据语料库的训练让机器人回答问题。seq2seq关于seq2seq的机制原理可...

2017-09-28 08:59:15

阅读数:20068

评论数:15

谈谈谷歌word2vec的原理

word2vec在NLP领域中,为了能表示人类的语言符号,一般会把这些符号转成一种数学向量形式以方便处理,我们把语言单词嵌入到向量空间中就叫词嵌入(word embedding)。谷歌开源的word2vec则是这么一种词嵌入工具,它能生成词向量,通过词向量可以很好地度量词与词之间的相似性。word...

2017-08-10 20:14:41

阅读数:6914

评论数:0

新书预售《Tomcat内核设计剖析》

鄙人的新书《Tomcat内核设计剖析》已经在京东预售了,有需要的朋友可以通过文末的连接进行预定。感谢各位朋友。本书特色? 深入剖析Tomcat的每一个设计要点,使读者知其然,更知其所以然; 拒绝没营养的直接贴代码分析,而是升华到对Tomcat设计思想的剖析; 通篇采用大量插图来辅助文字解释,降低读...

2017-05-03 09:19:23

阅读数:5300

评论数:21

机器学习的监督学习在研究什么

什么是监督学习简单来说,监督学习是对给定的输入输出样本进行学习并建立一个模型,该模型能对任意输入做出好的输出预测。 监督学习核心思想 所有可能的模型函数的集合称为假设空间,$H=\left \{ f|Y=f(X) \right \}$。 对于所有的模型函数集合,可能不知道是该用用逻辑回归模型、或...

2017-03-17 20:05:08

阅读数:2678

评论数:0

分布式系统调用链监控

分布式系统调用链监控 应用架构由集中式向分布式演进后,整个调用关系变得复杂。 分布式架构由复杂且较大规模集群构成,各个应用之间相当独立,可能由不同团队、不同语言实现。 系统一个完整的调用过程可能横跨多个服务及数据中心。 复杂的调用导致系统出问题后难以定位问题。 无法准确知道整体系统性能及运行情况。...

2016-12-23 22:51:51

阅读数:27177

评论数:25

如何设计一个数据库中间件(支持百亿级别数据存储)

继《如何设计开发一个可用的web容器》之后又一如何系列文章,《如何设计一个数据库中间件》

2016-05-08 10:27:06

阅读数:12835

评论数:5

web安全认证机制知多少

如今web服务随处可见,成千上万的web程序被部署到公网上供用户访问,有些系统只针对指定用户开放,属于安全级别较高的web应用,他们需要有一种认证机制以保护系统资源的安全,本文将探讨五种常用的认证机制及优缺点。Basic模式HTTP协议规范中有两种认证方式,一种是Basic认证,另外一种是Dige...

2016-05-07 08:37:24

阅读数:16771

评论数:0

如何设计一个web容器

开发一个web容器涉及很多不同方面不同层面的技术,例如通信层的知识,程序语言层面的知识等等,且一个可用的web容器是一个比较庞大的系统,要说清楚需要很长的篇幅,本文旨在介绍如何设计一个web容器,只探讨实现的思路,并不涉及过多的具体实现。把它分解划分成若干模块和组件,每个组件模块负责不同的功能,下...

2016-02-14 10:20:45

阅读数:13944

评论数:12

集群RPC通信

RPC即远程过程调用,它的提出旨在消除通信细节、屏蔽繁杂且易错的底层网络通信操作,像调用本地服务一般地调用远程服务,让业务开发者更多关注业务开发而不必考虑网络、硬件、系统的异构复杂环境。先看看集群中RPC的整个通信过程,假设从节点node1开始一个RPC调用,①先将待传递的数据放到NIO集群通信框...

2015-11-20 13:39:20

阅读数:5756

评论数:0

内存数据网格hazelcast的一些机制原理

hazelcast使用文档可以直接看官方文档,但机制原理相关的资料基本没有,本人硬撸源码写的一些东西,跟大家分享一下。

2015-08-03 16:53:51

阅读数:4211

评论数:1

一个例子了解迁移学习

迁移学习 对于传统机器学习而言,要求训练样本与测试样本满足独立同分布,而且必须要有足够多的训练样本。而迁移学习能把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),目标领域往往只有少量有标签样本,使得目标领域能够取得更好的学习效果。 迁移方式 样本迁移,在源领域中找出与目标领域相似...

2018-12-13 08:35:39

阅读数:12

评论数:0

看图轻松理解最小(大)堆

前言 推出一个新系列,《看图轻松理解数据结构和算法》,主要使用图片来描述常见的数据结构和算法,轻松阅读并理解掌握。本系列包括各种堆、各种队列、各种列表、各种树、各种图、各种排序等等几十篇的样子。 最小(大)堆 最小(大)堆是一颗完全二叉树,该树中的某个节点的值总是不大于(不小于)其左右子节点的值。...

2018-12-10 08:40:49

阅读数:320

评论数:2

可视化探索卷积神经网络提取特征

前言 卷积神经网络的发展主要是为了解决人类视觉问题,不过现在其它方向也都会使用。发展历程主要从Lenet5->Alexnet->VGG->GooLenet->ResNet等。 传统神经网络 传统BP神经网络层与...

2018-12-06 08:16:24

阅读数:243

评论数:2

图论最小生成树

前言 推出一个新系列,《看图轻松理解数据结构和算法》,主要使用图片来描述常见的数据结构和算法,轻松阅读并理解掌握。本系列包括各种堆、各种队列、各种列表、各种树、各种图、各种排序等等几十篇的样子。 最小生成树 最小生成树(Minimum Spanning Tree),简称MST,更详细点叫最小权重生...

2018-12-03 09:23:59

阅读数:37

评论数:0

聊聊从脑神经到神经网络

前言 神经网络能解决非线性的复杂的模型问题,而且通过增加网络的层数将具备更加强大的学习能力,另外如果再改造改造层的结构则变成各类深度学习模型,例如CNN RNN之类的。 神经网络一般被用来捕捉复杂情况下的特征,比如说视频图像中的动物类别、一名作家的写作风格等等。 大脑神经元 人脑可能有1000多亿...

2018-11-29 08:32:22

阅读数:30

评论数:0

图论深度优先搜索

前言 推出一个新系列,《看图轻松理解数据结构和算法》,主要使用图片来描述常见的数据结构和算法,轻松阅读并理解掌握。本系列包括各种堆、各种队列、各种列表、各种树、各种图、各种排序等等几十篇的样子。 关于图遍历 图遍历即图的遍历,指从图中任一顶点出发,对图中的所有顶点访问一次。图的遍历与树的遍历相似,...

2018-11-26 09:17:10

阅读数:35

评论数:0

隐马尔可夫分词

前言 虽然目前 nlp 很多任务已经发展到了使用深度学习的循环神经网络模型和注意力模型,但传统的模型咱们也一样要了解。这里看下如何使用隐马尔科夫模型(HMM)进行分词。 隐马尔科夫模型 隐马尔科夫模型是一种有向图模型,图模型能清晰表达变量相关关系的概率,常见的图模型还有条件随机场,节点表示变量,节...

2018-11-22 08:37:41

阅读数:36

评论数:0

看图轻松理解桶排序

前言 推出一个新系列,《看图轻松理解数据结构和算法》,主要使用图片来描述常见的数据结构和算法,轻松阅读并理解掌握。本系列包括各种堆、各种队列、各种列表、各种树、各种图、各种排序等等几十篇的样子。 桶排序 桶排序即Bucket Sort,也称箱排序。其基本思想是将待排序数组分配到若干个桶内,然后每个...

2018-11-19 08:44:12

阅读数:50

评论数:0

提示
确定要删除当前文章?
取消 删除