seaboat的专栏——a free boat on the sea.

思想自由,技术自由

谈谈谷歌word2vec的原理

word2vec在NLP领域中,为了能表示人类的语言符号,一般会把这些符号转成一种数学向量形式以方便处理,我们把语言单词嵌入到向量空间中就叫词嵌入(word embedding)。谷歌开源的word2vec则是这么一种词嵌入工具,它能生成词向量,通过词向量可以很好地度量词与词之间的相似性。word...

2017-08-10 20:14:41

阅读数:3949

评论数:0

TensorFlow构建循环神经网络

前言前面在《循环神经网络》文章中已经介绍了深度学习的循环神经网络模型及其原理,接下去这篇文章将尝试使用TensorFlow来实现一个循环神经网络,该例子能通过训练给定的语料生成模型并实现对字符的预测。这里选择使用最原始的循环神经网络RNN模型。语料库的准备这里就简单用纪伯伦的《On Friends...

2017-08-29 16:06:04

阅读数:1555

评论数:0

如何用TensorFlow训练词向量

前言前面在《谈谈谷歌word2vec的原理》文章中已经把word2vec的来龙去脉说得很清楚了,接下去这篇文章将尝试根据word2vec的原理并使用TensorFlow来训练词向量,这里选择使用skip-gram模型。语料库的准备这里仅仅收集了网上关于房产新闻的文章,并且将全部文章拼凑到一起形成一...

2017-08-24 15:21:57

阅读数:4003

评论数:1

谈谈Tomcat内核

========广告时间========鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以到 https://item.jd.com/12185360.html 进行预定。感谢各位朋友。为什么写《Tomcat内核设计剖析》=========================欢迎...

2017-08-21 18:26:10

阅读数:2452

评论数:5

GRU神经网络

前面已经详细讲了LSTM神经网络(文末有链接回去),接着往下讲讲LSTM的一个很流行的变体。GRU是什么GRU即Gated Recurrent Unit。前面说到为了克服RNN无法很好处理远距离依赖而提出了LSTM,而GRU则是LSTM的一个变体,当然LSTM还有有很多其他的变体。GRU保持了LS...

2017-08-17 15:19:48

阅读数:21551

评论数:2

从JDK源码角度看Integer

概况Java的Integer类主要的作用就是对基本类型int进行封装,提供了一些处理int类型的方法,比如int到String类型的转换方法或String类型到int类型的转换方法,当然也包含与其他类型之间的转换方法。除此之外还有一些位相关的操作。继承结构--java.lang.Object ...

2017-08-15 16:31:41

阅读数:10562

评论数:7

LSTM神经网络

LSTM是什么LSTM即Long Short Memory Network,长短时记忆网络。它其实是属于RNN的一种变种,可以说它是为了克服RNN无法很好处理远距离依赖而提出的。我们说RNN不能处理距离较远的序列是因为训练时很有可能会出现梯度消失,即通过下面的公式训练时很可能会发生指数缩小,让RN...

2017-08-03 21:21:52

阅读数:5745

评论数:0

从JDK源码角度看Short

概况Java的Short类主要的作用就是对基本类型short进行封装,提供了一些处理short类型的方法,比如short到String类型的转换方法或String类型到short类型的转换方法,当然也包含与其他类型之间的转换方法。继承结构--java.lang.Object --java.la...

2017-08-01 20:25:31

阅读数:2115

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭