/*
烟台大学计算机学院
文件名称:main.cpp body.cpp head.cpp
作者:王硕
完成日期:2017年10月26日
问题描述:第九周项目一
二叉树的链式存储算法库采用程序的多文件组织形式
*/
#include <stdio.h>
#include "head.h"
int main()
{
BTNode *b,*p,*lp,*rp;;
printf(" (1)创建二叉树:");
CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
printf("\n");
printf(" (2)输出二叉树:");
DispBTNode(b);
printf("\n");
printf(" (3)查找H节点:");
p=FindNode(b,'H');
if (p!=NULL)
{
lp=LchildNode(p);
if (lp!=NULL)
printf("左孩子为%c ",lp->data);
else
printf("无左孩子 ");
rp=RchildNode(p);
if (rp!=NULL)
printf("右孩子为%c",rp->data);
else
printf("无右孩子 ");
}
else
printf(" 未找到!");
printf("\n");
printf(" (4)二叉树b的深度:%d\n",BTNodeDepth(b));
printf(" (5)释放二叉树b\n");
DestroyBTNode(b);
return 0;
}
//头文件
#ifndef HEAD_H_INCLUDED
#define HEAD_H_INCLUDED
#define MaxSize 100
typedef char ElemType;
typedef struct node
{
ElemType data;
struct node *lchild;
struct node *rchild;
}BTNode;
void CreateBTNode(BTNode *&b,char *str); //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x); //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p); //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p); //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b); //销毁二叉树
#endif // HEAD_H_INCLUDED
//body
#include "stdio.h"
#include <malloc.h>
#include "head.h"
void CreateBTNode(BTNode *&b,char *str) //由str串创建二叉链
{
BTNode *St[MaxSize],*p=NULL;
int top=-1,k,j=0;
char ch;
b=NULL; //建立的二叉树初始时为空
ch=str[j];
while (ch!='\0') //str未扫描完时循环
{
switch(ch)
{
case '(':
top++;
St[top]=p;
k=1;
break; //为左节点
case ')':
top--;
break;
case ',':
k=2;
break; //为右节点
default:
p=(BTNode *)malloc(sizeof(BTNode));
p->data=ch;
p->lchild=p->rchild=NULL;
if (b==NULL) //p指向二叉树的根节点
b=p;
else //已建立二叉树根节点
{
switch(k)
{
case 1:
St[top]->lchild=p;
break;
case 2:
St[top]->rchild=p;
break;
}
}
}
j++;
ch=str[j];
}
}
BTNode *FindNode(BTNode *b,ElemType x) //返回data域为x的节点指针
{
BTNode *p;
if (b==NULL)
return NULL;
else if (b->data==x)
return b; //直接返回b作为节点指针
else
{
p=FindNode(b->lchild,x);
if (p!=NULL)
return p;
else
return FindNode(b->rchild,x);
}
}
BTNode *LchildNode(BTNode *p) //返回*p节点的左孩子节点指针
{
return p->lchild;
}
BTNode *RchildNode(BTNode *p) //返回*p节点的右孩子节点指针
{
return p->rchild;
}
int BTNodeDepth(BTNode *b) //求二叉树b的深度
{
int lchilddep,rchilddep;
if (b==NULL)
return(0); //空树的高度为0
else
{
lchilddep=BTNodeDepth(b->lchild); //求左子树的高度为lchilddep
rchilddep=BTNodeDepth(b->rchild); //求右子树的高度为rchilddep
return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
}
}
void DispBTNode(BTNode *b) //以括号表示法输出二叉树
{
if (b!=NULL)
{
printf("%c",b->data);
if (b->lchild!=NULL || b->rchild!=NULL)
{
printf("(");
DispBTNode(b->lchild);
if (b->rchild!=NULL) printf(",");
DispBTNode(b->rchild);
printf(")");
}
}
}
void DestroyBTNode(BTNode *&b) //销毁二叉树
{
if (b!=NULL)
{
DestroyBTNode(b->lchild);
DestroyBTNode(b->rchild);
free(b);
}
}
运行结果:
知识点总结:
二叉树的基础算法
学习心得:
让我更清楚地了解了二叉树的链式存储结构。