一.选择题
答案:A
解析:既是又是,他们是并的关系,所以是合取
答案:D
解析:永真式,真值表所有的值都为1
答案:C
解析:小项在真值表中是1,1的个数是三个,所以选C
答案:A
解析:谓词公式是VxP(x) ,论域元素是a,b,这个谓词公式是代表全部的x都有P的特性,那么带入进去,a和b都会有P这个特性,他们是并的关系,所以选A
答案:B
解析:这种看到自由变元的题,就看前面有没有定义,前面没有定义,并且存在,那么y就是自由变元
答案:C
解析:如果是自反,就要有1,1 2,2 3,3 4,4
答案:D
解析:画图,1不能既是5,又是6
答案:C
解析:左侧公式,左右颠倒,值不变。C选项,中间运算符号是任何一种,都是等于x y中的最小的一个,值不变, 满足交换律
答案:B
解析:原集合中一部分集合,但是不能是全部,所以选B
答案:D
解析:AxB ,X是笛卡尔积,就是用A集合的元素去匹配B集合的元素,即2X3 = 6
答案:D
解析:满足等价关系要自反,对称,传递。每个等价关系对应集合A的一个划分,因此等价关系的个数等于集合A的划分数目 1. {{1},{2},{3}} 2.{{1,2},3} 3.{{1,3},2} 4.{{2,3},1} 5.{1,2,3}
答案:D
解析:首先,零元是集合内的元素,零元的定义,所有的元素和零元运算后都等于零元。现在定义了A集合有三个元素,最多有三个左零元,所以选D
答案:B
解析:在偏序集中(哈斯图)任取两个点向上或向下能够有且唯一的汇集到一个点。重要:1.必须能汇集到一个点。2.只能是一个点,不能是多个
这里C 的2 3错了,2 和3是平级
答案:A
解析:看到无向图,先想到握手定理,无向图的总度数(各个节点度数之和)=2倍边数,根据握手定理,我们可以知道总度数一定是偶数
而且,可以根据节点数,度数最高=节点数-1
A有四个节点,最多也就3度,他有一个4度的,所以错
答案:D
解析:最大度数=节点数-1
二.填空题
答案:1
解析:
答案:┐P v Q
解析:主合取范式是合取连接,是由多个析取连接的原子命题组合成的(大项),大项都是0,那么我们可以画一下真值表
这里要注意一下,如果是主合取 1要取反,如果是求主析取,0的取反
答案:0
解析:自然数是从0开始不含负数,如果x=11,那么y=-1,所以是0
答案:{1,3,5,7,9}
解析:10以内的正奇数,1,3,5,7,9
答案:{2,4}
解析:∩是交集的意思,交集是A B元素相同的元素,组成新的集合。
注意:∩是交集,把∩比作一个桥,用来交往的。∪是并集,不要搞混。
答案:{1,2,3,4}
解析:dom是取第一元素,值不重复
答案:0
解析:幺元也叫单位元,幺元是存在集合里面的,所有集合中的元素和幺元运算=元素自己。1+0=1,2+0=2…,所以0的幺元
答案:2
解析:零元的意思是,集合中的素有元素,和零元运算都等于0,群的概念,满足封闭,可结合,含单位元,可逆,如果还满足交换,这个群叫做交换群(abel)。这道题就是一个概念,一个不含零元的群,至少是2阶
封闭,运算完也要在集合里
可结合,满足结合律
含单位元,有幺元
可逆,每个元素都有逆元
可交换,满足交换律
答案:是
解析:A的幂集,是 空,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3} 八个。从中任意挑两个,带入到分配律里面,是否可以成立。这道题基本不会出,可以不看,简单了解就行。
答案:6
解析:简单的意思就是不能由重复的边,无向图的意思是两个节点之间是没有箭头的C=<V,E> v是节点,e是边,这道题的意思就是四个节点,最多多少条边。既然是简单图,并且是求最多多少条边,那么这个图就是一个完全图,完全图的边数有个公式n是节点,带入进去就是6
三.简答题
答案:m000 v m010 v m100 v m110 v m111 或∑(0,2,4,6,7)
解析:主析取范式,是由小项连接,小项是1
答案:VxVz(P(x,y)->Q(x,z))
解析:前束范式就是,所有的量词提到前面去。首先看公式,最外层的Vx 是管它括起来的里面的x,第一个P(x,y)中的y是没人管的,第二个VyQ(x,y)中y又被管着,x是最外层的x管着的。谓词公式是不可以出现同时有人管,又没人管的变元。那我们可以让y没人管,然后VyQ(x,y)就改成VzQ(x,z)这样公式就变成了Vx(P(x,y)->VzQ(x,z)),然后我们把里面的Vz给提出来,就变成了VxVz(P(x,y)->Q(x,z))
答案:r( R )是自反闭包,把对角线不是1的补成1,r( R ) = {<1,2>,<1,3>,<2,2>,< 3,1>,<1,1>,< 3,3>}
s( R )是对称闭包,把不对称的补上1,s( R ) = {<1,2>,<1,3>,<2,2>,< 3,1>,<2,1>}
t( R )是传递闭包,t( R ) = {<1,2>,<1,3>,<2,2>,< 3,1>,<1,1>,< 3,3>,< 3,2>}
答案:极大元是{3,4} 极小元是{2,3}
解析:极大元和极小元,每一条线上都会有一个极大元和极小元,2,4是一条线,3是一条线,2,3是平级
答案:A∪B = {1,2,3,4,5,6,8} ,A-B = {1,3,5},B-A = {6,8}
解析:第一个是并,第二个是差,第三个也是,差事以左边为主,减去右边的
答案:
解析:克鲁斯卡尔算法是一个最小生成树的算法,把一个图的所有节点连接起来,最小的方案。n个节点的图的最小生成树的有n-1条边。
克鲁斯卡尔算法的步骤:
- 把所有的边去掉,保留节点
- 从权值最小的那一条边开始连接,依次增大。只要不形成圈,就保留这条边。
- 连够n-1条边就停
答案:先:{a,b,d,e,f,g,c} 中:{d,b,f,e,g,a,c} 后:{a,f,g,e,b,c,a}
解析:先跟法就是,从上往下,从左到右
中跟法是,所有节点,从左到右
后跟法是,所有节点先左,后右,最后跟
四.证明题
解析:这道题让证明R,我们可以用归谬法,假设R是1,去推R ,如果推出R是1,就证明成功,如果是0那么通过反证法,证明R是1
- 假设 R
- S v R
- S 由(1,2)
- S -> ┐Q
- ┐S->Q
- Q 由(3,4)
- R<->Q
- R 由(1,6)
解析:群的性质:1. 封闭,2.可结合,3.含幺,4.可逆,5.可交换
半群满足前两个。群满足前四个。交换群全满足。
解析:考的冷门,先不管