题解 -NOIp2011 Day1T3 Mayan游戏(mayan.cpp/.c/.pas)

-NOIp2011 Day1T3 Mayan游戏(mayan.cpp/.c/.pas)

欢迎来到本蒟蒻的题解
题目省略,直接进入正题

主要思路

dfs搜索
阶段为n个阶段,即n步。
每次把全图都遍历一遍,只要合法(左右不相等)的点就去搜,因为一个点可以被挪动很多次。回溯的时候记得保存状态,图的状态用一个临时数组保存
以下有几个剪枝
1.一个块的左边是非空块时不需要考虑左移,因为会和之前的块右移重复,即只有当左块为空时才左移
2.如果有一种颜色当前的块数目满足小于3且不等于0,直接break
方块掉落比较容易处理,看代码即可
消除就是枚举中间点,如果它两边的点都等于自己,那么他们就是可消除块,再在此基础上往端点两边拓展,拓展完后保存下来。最后全部的可消除块找出来后,把这些可消除块全部删掉变为0

代码

//这道题Cena跑了3.12秒,洛谷只跑了1.82秒,数据太强了
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;

struct J {int x,y,z;}ans[10100]; //记录答案
int n;
int a[11][11]; // 棋盘

void drop() {
    for(int i=1;i<=5;i++)
        for(int j=1;j<=7;j++)
            if(a[i][j]) { //所有可下降的方块下降
                int t=j;
                while(1) {
                    t--;
                    if(t!=0 && !a[i][t]) a[i][t]=a[i][t+1],a[i][t+1]=0;//如果下面的方块不为空,就往下掉
                    else break;
                }
            }
}

bool find_clear(){ //清除可对消的所有方块
 //这里的做法就是枚举每一个方块,把他当做至少三块消除的中点
 //上下左右搜完合法之后继续往下拓展来搜索,可以消除的全部标记起来
 //最后一起处理
    int sum=0;
    struct J {int l,r,f,y;}tmp[11*11];
    for(int i=1;i<=5;i++)
        for(int j=1;j<=7;j++)
            if(a[i][j]){
                if(a[i+1][j]==a[i][j] && a[i][j]==a[i-1][j]){
                    //先是左右搜索,至少3个方块一样就是合法了,标记起来
                    sum++,tmp[sum].y=j,tmp[sum].f=1;
                    int t=i+1;
                    //下面在合法的基础上继续拓展
                    while(1) {
                        if(a[++t][j]==a[t-1][j]) ;
                        else break;
                    }t--;
                    tmp[sum].r=t; t=i-1;
                    while(1) {
                        if(a[--t][j]==a[t+1][j]) ;
                        else break;
                    }t++;
                    tmp[sum].l=t;
                }
                //这里同理,是上下搜索,就不过多赘述
                if(a[i][j-1]==a[i][j] && a[i][j]==a[i][j+1]) {
                    sum++,tmp[sum].y=i,tmp[sum].f=2;
                    int t=j-1;
                    while(1) {
                        if(a[i][--t]==a[i][t+1]) ;
                        else break;
                    }t++;
                    tmp[sum].l=t; t=j+1;
                    while(1) {
                        if(a[i][++t]==a[i][t-1]) ;
                        else break;
                    }t--;
                    tmp[sum].r=t;
                }
            }
    //最后所有被标记的点统一消除
    for(int i=1;i<=sum;i++)
        for(int j=tmp[i].l;j<=tmp[i].r;j++) {
            if(tmp[i].f==1) a[j][tmp[i].y]=0;
            else if(tmp[i].f==2) a[tmp[i].y][j]=0;
        }
    //返回消除操作
    if(!sum) return false;
    else return true;
}

bool ok() { //检查棋盘为空
    for(int i=1;i<=5;i++)
        for(int j=1;j<=7;j++)
            if(a[i][j]) return false;
    return true;
}

void dfs(int step) //搜索
{
    if(step>n){ //走完步数
        if(ok()){ //ok():确保棋盘已空
            for(int i=1;i<=n;i++){
                if(ans[i].z==1)
                    printf("%d %d -1\n",ans[i].x,ans[i].y-1);
                else 
                    printf("%d %d 1\n",ans[i].x-1,ans[i].y-1);
            }
            exit(0);
        }
        else return;
    }
    int sum[11]; //剪枝
    memset(sum,0,sizeof(sum));
    for(int i=1;i<=5;i++)
        for(int j=1;j<=7;j++)
            sum[a[i][j]]++;
    for(int i=1;i<=10;i++) 
        if(sum[i]!=0 && sum[i]<=2) return; //达不到消除条件

    for(int i=1;i<=4;i++)
        for(int j=1;j<=7;j++) {
            if(!a[i][j] && !a[i+1][j]) continue;//不加这个可能会超时,因为7*5的图里有好多组0
            ans[step].x=i; ans[step].y=j;
            if(!a[i][j]) ans[step].z=1;//此块为空右边左移
            else ans[step].z=0;
            //正常情况下都是方块往右移,因为优先级大于往左移,但如果此方块为空的话,那么
            //就把右边方块往左边移,避免了下次循环到右边那个方块时,再进行左右都要移一遍
            int tmp[11][11];
            memcpy(tmp,a,sizeof(tmp));
            swap(a[i][j],a[i+1][j]);// 移动方块
            drop(); //所有方块落下
            while(find_clear()==true) 
            //清除当前可以清除的方块,每清除一次就掉落一次,
            //清除不了了就不下降
            drop();

            dfs(step+1); //继续深搜
            //回溯
            ans[step].x=0;
            ans[step].y=0;
            ans[step].z=0;
            memcpy(a,tmp,sizeof(a));
        }
}

template<class T>void read(T &x)
//动态读入优化,支持int,long,long long,char,double
{
    x=0;int f=0;char ch=getchar();
    while(ch<'0'||ch>'9')  {f|=(ch=='-');ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
    x=f?-x:x;
    return;
}

int main()
{
    freopen("mayan.in","r",stdin);
    freopen("mayan.out","w",stdout);
    read(n); //读入步数
    for(int i=1;i<=5;i++){ //读入图
        int tot=0;
        while(1){
            int t; read(t);
            if(!t) break;
            else a[i][++tot]=t;
            //存储时把图翻了一个90°
        }
    }
    dfs(1);
    printf("-1");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值