题解 CF722E 【Research Rover】

25 篇文章 0 订阅
1 篇文章 0 订阅

题解- CF722E

  • 题目意思

    题目就是让你从 ( 1 , 1 ) (1,1) (1,1)走到 ( n , m ) (n,m) (n,m)的道路中有 k k k个特殊点,没经过一个特殊点会使分数变为原来一半,问从 ( 1 , 1 ) (1,1) (1,1) ( n , m ) (n,m) (n,m)的期望得分(对 1 0 9 + 7 10^9+7 109+7取模)

  • S o l Sol Sol

    我们首先把 ( 1 , 1 ) , ( n , m ) (1,1),(n,m) (1,1),(n,m)也看成特殊点,但是分数不用除二,然后为了保证每次是向下或向右先对 x x x排序即可,接下来就是 D p Dp Dp啦。

    这道题目如果把状态设为 f i , j f_{i,j} fi,j表示到 i i i点经过 j j j个特殊点的方案数的话,转移就很麻烦了。所以我们把状态改为 f i , j f_{i,j} fi,j表示表示到 i i i至少经过 j j j个特殊点的方案数,这样就可以避免一些很麻烦的容斥。

    然后我们再设 g i , j g_{i,j} gi,j表示从 i i i j j j点的方案数,那么这就变为一个清新的组合数问题,我们考虑一共走了 ( i + j ) (i+j) (i+j)次,最后选 i i i次向上,所以

    g i , j = C ∣ x i − x j ∣ + ∣ y i − y j ∣ ∣ x i − x j ∣ g_{i,j}=C^{|x_i-x_j|}_{|x_i-x_j|+|y_i-y_j|} gi,j=Cxixj+yiyjxixj

    对于 f i , j f_{i,j} fi,j的转移我们考虑从 j − 1 j-1 j1转移过来,这里很好的体现状态设计的正确性,我们计算正好 j j j次,所以

    f i , j = ∑ f k , j − 1 − f k , j ( x k ≤ x i , y k ≤ y i ) f_{i,j}=\sum f_{k,j-1}-f_{k,j}(x_k\leq x_i,y_k\leq y_i) fi,j=fk,j1fk,j(xkxi,ykyi)

    其中 ( f k , j − 1 − f k , j ) (f_{k,j-1}-f_{k,j}) (fk,j1fk,j)表示经过 j − 1 j-1 j1个特殊点到达 i i i的方案数。

    那么最后的答案就是 ( C n + m n ) (C^{n}_{n+m}) (Cn+mn) − 1 × ∑ ( f k , i − f k , i + 1 ) × ( s / 2 i ) ^{-1} \times \sum(f_{k,i}-f_{k,i+1}) \times (s/2^{i}) 1×(fk,ifk,i+1)×(s/2i)

#include <bits/stdc++.h>
#define int long long
using namespace std;

inline int read()
{
	int sum=0,ff=1; char ch=getchar();
	while(!isdigit(ch))
	{
		if(ch=='-') ff=-1;
		ch=getchar();
	}
	while(isdigit(ch))
		sum=sum*10+(ch^48),ch=getchar();
	return sum*ff;
}

const int mod=1e9+7;
const int N=1e5+5;

inline int ksm(int x,int y)
{
	int ret=1ll;
	while(y)
	{
		if(y&1) ret=ret*x%mod;
		x=x*x%mod;
		y>>=1ll;
	}
	return ret;
}

int n,m,s,k,f[N][31],ans,jc[N*2],inv[N*2];

struct nood
{
	int x,y;
	inline bool friend operator < (const nood &b,const nood &c)
	{
		if(b.x==c.x) return b.y<c.y;
		return b.x<c.x;
	}
};
nood a[N];

inline int C(int x,int y)
{
	return jc[x]%mod*inv[x-y]%mod*inv[y]%mod;
}

inline int calc(nood b,nood c)
{
	return C(c.x-b.x+c.y-b.y,c.x-b.x);
}

signed main()
{
	n=read();
	m=read();
	k=read();
	s=read();
	inv[0]=jc[0]=1;
	for ( int i=1;i<=n+m;i++ ) jc[i]=jc[i-1]*i%mod;
	for ( int i=1;i<=n+m;i++ ) inv[i]=ksm(jc[i],mod-2)%mod;
	for ( int i=1;i<=k;i++ ) a[i]=(nood){read(),read()};
	sort(a+1,a+k+1);
	if(a[1].x!=1||a[1].y!=1) 
	{
		a[++k]=(nood){1,1};
		s*=2;
	}
	if(a[k].x!=n||a[k].y!=m) a[++k]=(nood){n,m};
	//加入虚拟点(1,1)/(n,m) 
	else s=(s+1)/2;
	int gs=log2(s)+1;
	//最多经过gs个特殊点 
	sort(a+1,a+k+1);
	f[1][0]=1;
	//f(i,j):到点i经过(至少)j个特殊点的方案数 
	for ( int i=2;i<=k;i++ )
	{
		f[i][1]=calc(a[1],a[i]);
		for ( int j=2;j<=gs;j++ )
			for ( int t=1;t<i;t++ ) 
				if(a[t].x<=a[i].x&&a[t].y<=a[i].y)
				{
					f[i][j]+=(f[t][j-1]*calc(a[t],a[i]))%mod;
					f[i][j]=(f[i][j]+mod)%mod;
					f[i][j]-=(f[t][j]*calc(a[t],a[i]))%mod;
					f[i][j]=(f[i][j]+mod)%mod;
				}
	}
	int ans=0;
	for ( int i=1;i<=gs;i++ ) 
	{
		s-=s/2;
		ans=(ans+(f[k][i]-f[k][i+1])*s%mod+mod)%mod;
	}
	ans=(ans*ksm(calc(a[1],a[k]),mod-2)+mod)%mod;
	printf("%lld\n",ans);
	return 0;
}
/*
3 3 2 11
2 1
2 3
*/
	
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值