题解 - CF1197D Yet Another Subarray Problem

34 篇文章 0 订阅
25 篇文章 0 订阅

C F 1197 D   Y e t   A n o t h e r   S u b a r r a y   P r o b l e m \mathrm{ CF1197D \ Yet \ Another \ Subarray \ Problem} CF1197D Yet Another Subarray Problem 题解

题目意思

  • 就是给你一个序列 a a a,以及 m , k m,k m,k,定义区间 [ l , r ] [l,r] [l,r]的权值为 ∑ a i − k × ⌈ r − l + 1 m ⌉ \sum a_i-k\times\left\lceil\dfrac{r-l+1}{m}\right\rceil aik×mrl+1
  • 求那个区间权值最值
  • n ≤ 3 × 1 0 5 , m ≤ 10 , k ≤ 1 0 9 n\leq 3\times 10^5,m\leq 10,k\leq 10^9 n3×105,m10,k109

S o l \mathrm{Sol} Sol

  • 一看 m m m就知道和 m m m有关。这道题目有两种方法我都仔细讲一下。
    S o l 1 \mathrm{Sol_1} Sol1
    • 考虑 D P DP DP,设 f i , j f_{i,j} fi,j表示到 i i i连续取得个数 s % m = j s\%m=j s%m=j的最大值
    • 考虑转移
      • j = 0 j=0 j=0显然是从上一段转移过来,所以转移显然 f i , j = max ⁡ ( 0 , f i − 1 , m − 1 ) f_{i,j}=\max(0,f_{i-1,m-1}) fi,j=max(0,fi1,m1)
      • j = 1 j=1 j=1显然就是重开一段,那么转移就是 f i , j = f i − 1 , 0 − k + a i f_{i,j}=f_{i-1,0}-k+a_i fi,j=fi1,0k+ai,因为重开一段要减去 m m m(后面就不用减了)再加上自己的权值 a i a_i ai
      • 其余情况: f i , j = max ⁡ ( f i − 1 , j − 1 + a i ) f_{i,j}=\max(f_{i-1,j-1}+a_i) fi,j=max(fi1,j1+ai)
    • 答案就是 max ⁡ f i , j \max f_{i,j} maxfi,j
    • 但是这种方法要特判 m = 1 m=1 m=1的情况(这个就很简单了)
    • 复杂度 O ( n × m ) \mathrm{O(n\times m)} O(n×m)
    C o d e 1 \mathrm{Code_1} Code1
    #include <bits/stdc++.h>
    #define pb push_back
    #define int long long
    using namespace std;
    
    inline int read()
    {
    	int sum=0,ff=1; char ch=getchar();
    	while(!isdigit(ch))
    	{
    		if(ch=='-') ff=-1;
    		ch=getchar();
    	}
    	while(isdigit(ch))
    		sum=sum*10+(ch^48),ch=getchar();
    	return sum*ff;
    }
    
    const int N=3e5+5;
    
    int n,m,s,ans=-1e12,a[N],f[N][11];
    
    signed main()
    {
    	n=read();
    	m=read();
    	s=read();
    	for ( int i=1;i<=n;i++ ) a[i]=read();
    	if(m==1)
    	{
    		int tot=0;
    		for ( int i=1;i<=n;i++ )
    		{
    			tot+=a[i]-s;
    			ans=max(ans,tot);
    			tot=max(tot,0ll);
    		}
    		printf("%lld\n",max(0ll,ans));
    		return 0;
    	}
    	memset(f,128,sizeof f);
    	for ( int i=0;i<=n;i++ ) f[i][0]=0;
    	for ( int i=1;i<=n;i++ )  
    		for ( int j=0;j<=min(i,m-1);j++ ) 
    		{
    			if(j==1) 
    				f[i][j]=f[i-1][0]+a[i]-s;
    			else if(!j) f[i][j]=max(0ll,f[i-1][m-1]+a[i]);
    			else 
    				f[i][j]=max(f[i][j],f[i-1][j-1]+a[i]);
    			ans=max(ans,f[i][j]);
    		}
    	printf("%lld\n",ans);
    	return 0;
    }
    
    S o l 2 \mathrm{Sol_2} Sol2
    • 我们还是考虑和 m m m有关
    • 我们枚举从哪个数(假设 p p p)开始,那么对于后面的数 a i , a i + m × k a_i,a_{i+m\times k} ai,ai+m×k都要减去 s s s,那么 s u m i = ∑ a i − s ( ( i − p ) % m = 0 ) sum_i=\sum a_i-s((i-p)\%m=0) sumi=ais((ip)%m=0)
    • 然后对于每个 p + m × k p+m\times k p+m×k去更新答案,我们设 s u f i = max ⁡ i = l n s u m i suf_i=\max_{i=l}^{n}sum_i sufi=maxi=lnsumi
    • 那么最大值就是 s u f i − s u m i − 1 suf_i-sum_{i-1} sufisumi1
    • 复杂度 O ( n × m ) \mathrm{O(n\times m)} O(n×m)
    • 代码没写过,就不放了(主流算法还是这个)
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值