数论之 - 莫比乌斯反演

【学习笔记】数论之 - 莫比乌斯反演

I . \mathrm{I.} I.什么是莫比乌斯反演

  • A . \mathrm{A.} A. F n = ∑ d ∣ n f d F_{n}=\sum_{d|n}f_{d} Fn=dnfd f n = ∑ d ∣ n μ ( d ) F ( n d ) f_n=\sum_{d|n} \mu(d)F(\frac{n}{d}) fn=dnμ(d)F(dn)

  • B . \mathrm{B.} B. F n = ∑ n ∣ d f d F_{n}=\sum_{n|d}f_{d} Fn=ndfd f n = ∑ n ∣ d μ ( d n ) F ( d ) f_n=\sum_{n|d} \mu(\frac{d}{n})F(d) fn=ndμ(nd)F(d)

  • A , B \mathrm{A,B} A,B为莫比乌斯反演的两种形式, μ \mu μ为莫比乌斯函数

  • 【莫比乌斯函数】

    • μ ( 1 ) = 1 \mu(1)=1 μ(1)=1
    • μ ( n ) = ( − 1 ) k \mu(n)=(-1)^k μ(n)=(1)k ( n = ∏ 1 ≤ i ≤ k P i ) (n=\prod_{1\leq i\leq k} P_i) (n=1ikPi)
    • μ ( n ) = 0 \mu(n)=0 μ(n)=0

I I . \mathrm{II.} II.莫比乌斯的几道例题

例题1:洛谷P3455

  • ∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = k ] \sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=k] i=1nj=1m[gcd(i,j)=k]
  • 有原式转换可得: ∑ i = 1 n k ∑ j = 1 n k [ gcd ⁡ ( i , j ) = 1 ] \sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{n}{k}}[\gcd(i,j)=1] i=1knj=1kn[gcd(i,j)=1]
  • 使用莫比乌斯反演可得: ∑ i = 1 n k ∑ j = 1 n k ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) \sum_{i=1}^{\frac{n}{k}} \sum_{j=1}^{\frac{n}{k}}\sum_{d|\gcd(i,j)}\mu(d) i=1knj=1kndgcd(i,j)μ(d)
  • 为了方便(不需要去寻找 gcd ⁡ ( i , j ) \gcd(i,j) gcd(i,j)的因数)我们去枚举 d d d得到 ∑ d = 1 n μ ( d ) ∑ i = 1 n k d ∑ j = 1 n k d 1 \sum_{d=1}^{n}\mu(d)\sum_{i=1}^{\frac{n}{kd}}\sum_{j=1}^{\frac{n}{kd}}1 d=1nμ(d)i=1kdnj=1kdn1
  • 我们就成功地消除了后面两个 ∑ \sum ,得到最后的柿子: ∑ d = 1 n μ ( d ) [ n k d ] [ m k d ] \sum_{d=1}^{n}\mu(d) [\frac{n}{kd}][\frac{m}{kd}] d=1nμ(d)[kdn][kdm]
  • 然后我们先求出 μ ( d ) \mu(d) μ(d)的前缀和,对于后面一部分用高效的整除分块即可。
#include <bits/stdc++.h>
#define pb push_back
#define int long long
using namespace std;

inline int read()
{
	int sum=0,ff=1; char ch=getchar();
	while(!isdigit(ch))
	{
		if(ch=='-') ff=-1;
		ch=getchar();
	}
	while(isdigit(ch))
		sum=sum*10+(ch^48),ch=getchar();
	return sum*ff;
}

const int N=5e4+5;

int n,m,k,mu[N],sum[N],P[N],vis[N],cnt,ans;

inline void init()//莫比乌斯函数预处理
{
	mu[1]=1;
	for ( int i=2;i<=50000;i++ ) 
	{
		if(!vis[i]) 
		{
			P[++cnt]=i;
			mu[i]=-1;
		}
		for ( int j=1;j<=cnt,i*P[j]<=50000;j++ ) 
		{
			vis[i*P[j]]=1;
			if(!(i%P[j]))
			{
				mu[i*P[j]]=0;
				break;
			}
			mu[i*P[j]]=-mu[i];
		}
	}
	for ( int i=1;i<=50000;i++ ) sum[i]=sum[i-1]+mu[i];//前缀和
}

signed main()
{
	int Q=read();
	init();
	for (;Q--;)
	{
		n=read();
		m=read();
		k=read();
		ans=0;
		n/=k,m/=k;
		if(n<m) swap(n,m);//要保证m<n
		for ( int l=1,r;l<=m;l=r+1 ) 
		{
			r=min(n/(n/l),m/(m/l));//整除分块
			ans+=(sum[r]-sum[l-1])*(n/l)*(m/l);
		}
		printf("%lld\n",ans);
	}
	return 0;
}
			

例题2:洛谷P2522

  • f i , j = ∑ i = a b ∑ j = c d [ gcd ⁡ ( i , j ) = k ] f_{i,j}=\sum_{i=a}^{b} \sum_{j=c}^{d} [\gcd(i,j)=k] fi,j=i=abj=cd[gcd(i,j)=k]
  • 其他部分与例题一求法类似,就是这代题目的下界更改了。我们要利用一些简单的容斥: a n s = f b , d − f a − 1 , d − f c − 1 , b + f a − 1 , c − 1 ans=f_{b,d}-f_{a-1,d}-f_{c-1,b}+f_{a-1,c-1} ans=fb,dfa1,dfc1,b+fa1,c1
  • 每个 f i , j f_{i,j} fi,j求法与例题一类似,不在赘述
#include <bits/stdc++.h>
#define pb push_back
#define int long long
using namespace std;

inline int read()
{
	int sum=0,ff=1; char ch=getchar();
	while(!isdigit(ch))
	{
		if(ch=='-') ff=-1;
		ch=getchar();
	}
	while(isdigit(ch))
		sum=sum*10+(ch^48),ch=getchar();
	return sum*ff;
}

const int N=5e4+5;

int mu[N],sum[N],vis[N],P[N],cnt,k;

inline void init()
{
	mu[1]=1;
	for ( int i=2;i<=50000;i++ ) 
	{
		if(!vis[i]) 
		{
			P[++cnt]=i;
			mu[i]=-1;
		}
		for ( int j=1;j<=cnt,i*P[j]<=50000;j++ ) 
		{
			vis[i*P[j]]=1;
			if(!(i%P[j])) 
			{
				mu[i*P[j]]=0;
				break;
			}
			mu[i*P[j]]=-1*mu[i];
		}
	}
	for ( int i=1;i<=50000;i++ ) sum[i]=sum[i-1]+mu[i];
}

inline int calc(int n,int m)
{
	n/=k,m/=k;
	if(n<m) swap(n,m);
	int ans=0; 
	for ( int l=1,r=0;l<=m;l=r+1 )
	{
		r=min(n/(n/l),m/(m/l));
		ans+=(sum[r]-sum[l-1])*(n/l)*(m/l);
	}
	return ans;
}

signed main()
{
	int Q=read();
	init();
	for (;Q--;)
	{
		int a,b,c,d;
		a=read();
		b=read();
		c=read();
		d=read();
		k=read();
		printf("%lld\n",calc(b,d)-calc(a-1,d)-calc(b,c-1)+calc(a-1,c-1));
	}
	return 0;
}
		

例题3:洛谷P2257

  • ∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) ∈ 质 数 ] \sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)∈质数] i=1nj=1m[gcd(i,j)]
  • 我们设 P P P为质数集
  • 这道题目稍微复杂一点,我们先把原式变为 ∑ k ∈ P ∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = k ] \sum_{k∈P}\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=k] kPi=1nj=1m[gcd(i,j)=k]
  • ∑ k ∈ P ∑ i = 1 n k ∑ j = 1 n k [ gcd ⁡ ( i , j ) = 1 ] \sum_{k∈P}\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{n}{k}}[\gcd(i,j)=1] kPi=1knj=1kn[gcd(i,j)=1]
  • ∑ k ∈ P ∑ i = 1 n k ∑ j = 1 n k ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) \sum_{k∈P}\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{n}{k}}\sum_{d|\gcd(i,j)}\mu(d) kPi=1knj=1kndgcd(i,j)μ(d)
  • ∑ k ∈ P ∑ d = 1 n k μ ( d ) ∑ i = 1 n k d ∑ j = 1 n k d \sum_{k∈P}\sum_{d=1}^{\frac{n}{k}}\mu(d)\sum_{i=1}^{\frac{n}{kd}}\sum_{j=1}^{\frac{n}{kd}} kPd=1knμ(d)i=1kdnj=1kdn
  • ∑ k ∈ P ∑ d = 1 n k μ ( d ) [ n k d ] [ m k d ] \sum_{k∈P}\sum_{d=1}^{\frac{n}{k}}\mu(d)[\frac{n}{kd}][\frac{m}{kd}] kPd=1knμ(d)[kdn][kdm]
  • 我们再设 T = k d T=kd T=kd
  • ∑ k ∈ P ∑ d = 1 n k μ ( d ) [ n T ] [ m T ] \sum_{k∈P}\sum_{d=1}^{\frac{n}{k}}\mu(d)[\frac{n}{T}][\frac{m}{T}] kPd=1knμ(d)[Tn][Tm]
  • ∑ T = 1 n [ n T ] [ m T ] ∑ k ∈ P , k ∣ T μ ( T k ) \sum_{T=1}^{n}[\frac{n}{T}][\frac{m}{T}]\sum_{k∈P,k|T}\mu(\frac{T}{k}) T=1n[Tn][Tm]kP,kTμ(kT)
  • 然后前面的东西可以用分块实现,后面的东西可以在莫比乌斯反演中前缀和预处理出来。
#include <bits/stdc++.h>
#pragma GCC optimize("Ofast",3,"inline")
#pragma GCC target("avx")
#define pb push_back
#define int long long
using namespace std;

inline int read()
{
	int sum=0,ff=1; char ch=getchar();
	while(!isdigit(ch))
	{
		if(ch=='-') ff=-1;
		ch=getchar();
	}
	while(isdigit(ch))
		sum=sum*10+(ch^48),ch=getchar();
	return sum*ff;
}

const int N=1e7+5;
const int MAXN=1e7;

int n,m,cnt,P[N],vis[N],mu[N],sum[N],f[N];

inline int min(int x,int y)
{
	if(x<y) return x;
	return y;
}

inline void init()
{
	mu[1]=1;
	for ( int i=2;i<=MAXN;i++ ) 
	{
		if(!vis[i])
		{
			P[++cnt]=i;
			mu[i]=-1;
		}
		for ( int j=1;j<=cnt,i*P[j]<=MAXN;j++ ) 
		{
			vis[i*P[j]]=1;
			if(!(i%P[j])) 
			{
				mu[i*P[j]]=0;
				break;
			}
			mu[i*P[j]]=-mu[i];
		}
	}
	for ( int i=1;i<=cnt;i++ ) 
		for ( int j=1;j*P[i]<=MAXN;j++ ) 
			f[j*P[i]]+=mu[j];
	for ( int i=1;i<=MAXN;i++ ) sum[i]=sum[i-1]+f[i];
}

signed main()
{
	int Q=read();
	init();
	for (;Q--;)
	{
		n=read();
		m=read();
		int Lim=min(n,m),ans=0;
		for ( int l=1,r;l<=Lim;l=r+1 ) 
		{
			int L=n/l,R=m/l;
			r=min(n/L,m/R);
			ans=(ans+(sum[r]-sum[l-1])*L*R);
		}
		printf("%lld\n",ans);
	}
	return 0;
}
	

例题4:洛谷P3911

  • ∑ i = 1 n ∑ j = 1 n l c m ( a i , a j ) \sum_{i=1}^{n}\sum_{j=1}^{n} lcm(a_i,a_j) i=1nj=1nlcm(ai,aj)

  • 考虑到 a i ≤ 5 e 4 a_i\leq 5e4 ai5e4,我们转变原柿变为: ∑ i = 1 m x ∑ j = 1 m x i j × c i c j gcd ⁡ ( i , j ) \sum_{i=1}^{mx}\sum_{j=1}^{mx}\frac{ij\times c_ic_j}{\gcd(i,j)} i=1mxj=1mxgcd(i,j)ij×cicj

  • 上式中的 m x = max ⁡ a i mx=\max a_i mx=maxai c i c_i ci i i i出现过的次数

  • 按照套路变形: ∑ d = 1 m x ∑ i = 1 m x ∑ j = 1 m x [ gcd ⁡ ( i , j ) = d ] c i c j i j d \sum_{d=1}^{mx}\sum_{i=1}^{mx}\sum_{j=1}^{mx}[\gcd(i,j)=d]c_ic_j\frac{ij}{d} d=1mxi=1mxj=1mx[gcd(i,j)=d]cicjdij

  • ∑ d = 1 m x ∑ i = 1 m x d ∑ j = 1 m x d [ gcd ⁡ ( i , j ) = 1 ] c i d c j d × i j d \sum_{d=1}^{mx}\sum_{i=1}^{\frac{mx}{d}}\sum_{j=1}^{\frac{mx}{d}}[\gcd(i,j)=1]c_{id}c_{jd}\times ijd d=1mxi=1dmxj=1dmx[gcd(i,j)=1]cidcjd×ijd

  • ∑ d = 1 m x ∑ i = 1 m x d ∑ j = 1 m x d ∑ k ∣ gcd ⁡ ( i , j ) μ ( k ) c i d c j d × i j d \sum_{d=1}^{mx}\sum_{i=1}^{\frac{mx}{d}}\sum_{j=1}^{\frac{mx}{d}}\sum_{k|\gcd(i,j)}\mu(k)c_{id}c_{jd}\times ijd d=1mxi=1dmxj=1dmxkgcd(i,j)μ(k)cidcjd×ijd

  • ∑ d = 1 m x ∑ k = 1 m x d μ ( k ) k 2 ∑ i = 1 m x k d ∑ j = 1 m x k d c i k d c j k d × i j d \sum_{d=1}^{mx}\sum_{k=1}^{\frac{mx}{d}}\mu(k)k^2\sum_{i=1}^{\frac{mx}{kd}}\sum_{j=1}^{\frac{mx}{kd}}c_{ikd}c_{jkd}\times ijd d=1mxk=1dmxμ(k)k2i=1kdmxj=1kdmxcikdcjkd×ijd

  • ∑ d = 1 m x ∑ k d = 1 m x μ ( k ) k 2 ∑ i = 1 m x k d ∑ j = 1 m x k d c i k d c j k d × i j d \sum_{d=1}^{mx}\sum_{kd=1}^{mx}\mu(k)k^2\sum_{i=1}^{\frac{mx}{kd}}\sum_{j=1}^{\frac{mx}{kd}}c_{ikd}c_{jkd}\times ijd d=1mxkd=1mxμ(k)k2i=1kdmxj=1kdmxcikdcjkd×ijd

  • T = k d T=kd T=kd,则

  • ∑ d = 1 m x ∑ T = 1 m x μ ( k ) k 2 ∑ i = 1 m x T ∑ j = 1 m x T c i T c j T × i j d \sum_{d=1}^{mx}\sum_{T=1}^{mx}\mu(k)k^2\sum_{i=1}^{\frac{mx}{T}}\sum_{j=1}^{\frac{mx}{T}}c_{iT}c_{jT}\times ijd d=1mxT=1mxμ(k)k2i=1Tmxj=1TmxciTcjT×ijd

  • 考虑枚举 T T T

  • 那么 ∑ T = 1 m x ∑ k ∣ T ( k × μ ( k ) ) ∑ i = 1 m x T ( c i T × i ) \sum_{T=1}^{mx}\sum_{k|T}(k\times \mu(k))\sum_{i=1}^{\frac{mx}{T}}(c_{iT}\times i) T=1mxkT(k×μ(k))i=1Tmx(ciT×i)

  • 现在我们对于前半部分预处理一下,后面部分暴力算一下就可以了。

#include <bits/stdc++.h>
#pragma GCC optimize("Ofast",3,"inline")
#pragma GCC target("avx")
#define pb push_back
using namespace std;

inline int read()
{
	int sum=0,ff=1; char ch=getchar();
	while(!isdigit(ch))
	{
		if(ch=='-') ff=-1;
		ch=getchar();
	}
	while(isdigit(ch))
		sum=sum*10+(ch^48),ch=getchar();
	return sum*ff;
}

const int N=5e4+5;

int n,m,cnt,P[N],vis[N],mu[N],a[N]; 
long long f[N];

inline int min(int x,int y)
{
	if(x<y) return x;
	return y;
}

inline void init(int MAXN)
{
	mu[1]=1;
	for ( int i=2;i<=MAXN;i++ ) 
	{
		if(!vis[i])
		{
			P[++cnt]=i;
			mu[i]=-1;
		}
		for ( int j=1;j<=cnt,i*P[j]<=MAXN;j++ ) 
		{
			vis[i*P[j]]=1;
			if(!(i%P[j])) 
			{
				mu[i*P[j]]=0;
				break;
			}
			mu[i*P[j]]=-mu[i];
		}
	}
	for ( int i=1;i<=MAXN;i++ ) 
		for ( int j=i;j<=MAXN;j+=i ) 
			f[j]+=i*mu[i];
}

int main()
{
	int mx=0;
	n=read();
	for ( int i=1;i<=n;i++ ) 
	{
		int x=read();
		a[x]++;
		mx=max(mx,x);
	}
	init(mx); 
	long long ans=0;
	for ( int i=1;i<=mx;i++ ) 
	{
		long long now=0;
		for ( int j=1;j<=mx/i;j++ ) 
			now+=(a[i*j]*j);
		ans+=i*f[i]*now*now;
	}
	printf("%lld\n",ans);
	return 0;
}
/*
2
2 3
17
*/ 
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值