情感陪伴未必“大尺度”

最近听到两个创业故事颇为耐人寻味。一个是来自 DeepMind 的前科学家,另一个是一位教授。他们都开始做 AI 应用,结果为了盈利,不约而同地投入了“大尺度情感陪伴”赛道。据说,这里的“尺度”确实不小。

AI应用除了搞大尺度,还有没有别的又可行又对社会更有益的方向呢。当然有,比如最近很火的AI教育、AI会议笔记等方向,我们也是希望产品能够让知识工作更轻松高效。

但情感陪伴确实很重要,这些行业的产品也要让用户产生“很有收获”的感觉。当用户有“很有收获”的感觉,就能持续用下去,就有真正帮到用户的可能。同时“很有收获”的感觉容易度量,实际是否有收获几乎无法度量。

怎么让用户有“很有收获”的感觉呢。一种方法是游戏化,比如多邻国,最普遍的评价是:你在这里是不可能真的学会一门外语的,但它能给你学的很开心很有收获的感觉。另一种方式是把收藏、购买当作学习的替代品。比如Evernote的Web Clipper功能让用户觉得“收藏了就等于学到了”,再比如用户购买课程后只瞄了几眼,就已经产生了“学到了”的满足感。

更普世的方法是个性化推荐,造就了好几个最大的互联网平台,也导致大家口诛笔伐“信息茧房”。个性化推荐最有效的策略是推荐那些用户似曾相识的内容,十多年前我们在做云音乐的个性化推荐时就深有体会。

当时我们希望通过个性化推荐帮助用户发现更多好音乐。但如果一味推送新歌,用户往往无法接受。大多数时候,用户还是更想听熟悉的老歌。推新歌必须适度,将新歌夹杂在老歌中,曲风的变化也要平缓。基于这一理解,我们推出了私人 FM。没多久,这就成了用户最爱的推荐歌单。今天,云音乐已经细化出私人雷达、心动模式、时光雷达等类似歌单,这也是用户觉得云音乐“贴心”的重要原因。这些推荐策略的成功,正因为推荐的内容是用户产生一种似曾相识的感觉。

另一方面,因为用户听的多,最终它也成功实现了帮助用户发现更多好的音乐的初衷(也帮助很多原创音乐人取得成功)。我每年都会在云音乐上发现几支非常对我胃口的新乐队,其中许多是当下流行的,而不是我大学时代的音乐。

“信息茧房”这个词把个性化推荐妖魔化了,但其实这也是一种很有效的促进学习的策略,“因材施教”何尝不是一种个性化推荐?学习区的概念也是同样的道理,据研究,学习时大概15%比例的新知识能达到最好的效果,太少会让人感觉无聊,太多会令人恐慌。

我们会在产品中发掘类似的思路,比如让AI把新信息中对用户有用的部分筛选出来,再用用户自己的语言和用户已有的知识完美的融合起来。这个过程中用户可能都没写一个字,但有用的信息都读过了,该记的笔记也记完了,还能发现新信息和已有知识之间的联系,感觉“很有收获”。这背后是一种更高级的个性化推荐,也是对学习区理论的应用。

“很有收获”的感觉,也是一种情感陪伴。所以,情感陪伴很好,但未必都得“大尺度”,行业可以多考虑考虑教育、学习、工作、生活上小尺度的情感陪伴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值