一次方和:
∑
i
=
1
n
i
=
(
n
+
1
)
(
n
)
/
2
\sum_{i=1}^{n}i=(n+1)(n)/2
∑i=1ni=(n+1)(n)/2
二次方和:
∑
i
=
1
n
i
2
=
n
(
n
+
1
)
(
2
n
+
1
)
/
6
\sum_{i=1}^{n}i^2=n(n+1)(2n+1)/6
∑i=1ni2=n(n+1)(2n+1)/6
三次方和:
∑
i
=
1
n
i
3
=
n
2
(
n
+
1
)
2
/
4
\sum_{i=1}^{n}i^3=n^2(n+1)^2/4
∑i=1ni3=n2(n+1)2/4
四次方和:
∑
i
=
1
n
i
4
=
n
(
n
+
1
)
(
2
n
+
1
)
(
3
n
2
+
3
n
−
1
)
/
30
\sum_{i=1}^{n}i^4=n(n+1)(2n+1)(3n^2+3n-1)/30
∑i=1ni4=n(n+1)(2n+1)(3n2+3n−1)/30