平方和数太大,找规律,可以发现n = 1时,3开始;n = 2时,10开始, n = 3时,21开始。
1 * 3 = 3;
2 * 5 = 10;
3 * 7 = 21;
从而猜出n * (2 * n + 1)。
后来发现是可以用数学归纳法证明的,具体证明我就不放出来了,大家可以自行搜索
#include<bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int k = n * (2 * n + 1);
for (int i = k; i <= k + n; i++) {
if (i == k) cout << i << "^2";
else cout << " + " << i << "^2";
}
cout << " =\n";
int j = k + n + 1, m = 0;
while (m < n) {
if (m == 0) cout << j << "^2";
else cout << " + " << j << "^2";
j++;
m++;
}
return 0;
}