P2769 猴子上树(动态规划dp)C/C++

这篇博客探讨了一道编程题目,即猴子上树问题。通过使用动态规划,作者详细解释了如何用f[i][j]表示前i只猴子上了前j棵树的状态,并给出了C++代码实现。代码中,通过最小化猴子与树之间的距离,找到最优解。最后,程序输出了所有猴子都能上树的最小总距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P2769 猴子上树

在这里插入图片描述
在这里插入图片描述

程序循环里主要的部分是枚举树 而不是猴子 !
用f[i][j]来表示前 i 只猴子上了前 j 课树

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const long long maxn = 5005 ;
long long n,mon[maxn],tree[maxn],m,f[3][maxn];
int main()
{
	
    scanf("%d",&n) ;
    for(long long i = 1;i <= n ;++i) scanf("%d",&mon[i]) ;
    
    scanf("%d",&m) ;
    for(long long i = 1;i <= m ;++i) scanf("%d",&tree[i]) ;
    
    sort(mon + 1,mon + n + 1) ;
    sort(tree + 1,tree + m + 1) ;
    
    memset(f,0x7f,sizeof(f)) ;
    f[1][1] = abs(mon[1] - tree[1]) ;
    
    for(long long i = 2;i <= n ;++i)
     for(long long j = 1;j <= m ;++j) {
      	f[i % 2][j] = min(f[(i - 1 ) % 2][j] , f[(i - 1 ) % 2][j - 1]) + abs(mon[i] - tree[j]) ;
  }
  
    cout<<f[n % 2][m] ;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值