《微积分小白入门》的第三章 函数的极限:通往微积分的钥匙

3.1 极限的直觉化理解

动态演示思想

“当x无限接近某个值时,f(x)会稳定地逼近哪个数?”

在这里插入图片描述

当 x 接近 1 时,分子和分母都接近 0,但通过因式分解:
在这里插入图片描述

你会发现 f(x) 无限接近 2。这就是极限的本质:函数在某点的“趋势”,而非该点的实际值。

🌰 经典案例

  1. lim ⁡ x → 2 ( x + 1 ) = 3 \lim_{x\to2} (x+1) = 3 limx2(x+1)=3
    (当x接近2时,x+1自然接近3)

  2. lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x\to0} \frac{\sin x}{x} = 1 limx0xsinx=1
    (著名的"小角近似"基础)

3.2 极限的严格定义(ε-δ语言)

小白友好版解读

“对于任意小的误差范围ε,总能找到x的接近程度δ,使得当x与a的距离小于δ时,f(x)与L的误差小于ε”
简单来说:**只要 x 足够接近 a ,f(x) 就能无限接近 L **。

📜 标准定义
∀ ϵ > 0 ,   ∃ δ > 0 ,  当  0 < ∣ x − a ∣ < δ  时 ,   ∣ f ( x ) − L ∣ < ϵ \forall \epsilon>0,\ \exists \delta>0,\ \text{当}\ 0<|x-a|<\delta\ \text{时},\ |f(x)-L|<\epsilon ϵ>0, δ>0,  0<xa<δ , f(x)L<ϵ

理解流程图

给定ε>0
找到δ>0
0< x 与 a 之间的距离<δ
0<函数发与 L 之间的距离<δ

3.3 极限计算方法和七大法则

(1)直接代入法
如果函数在 x = a 处有定义(如多项式、指数函数等),直接代入:
在这里插入图片描述

(2)因式分解法
适用于 0/0 型未定式(如开头的例子):
在这里插入图片描述

(3)有理化法
适用于根号减法的未定式:
在这里插入图片描述

分子有理化后:
在这里插入图片描述

法则名称 数学表达 使用条件
四则运算法则 lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) ± lim ⁡ g ( x ) \lim[f(x)±g(x)]=\lim f(x)±\lim g(x) lim[f(x)±g(x)]=limf(x)±limg(x) 各部分极限存在
乘法法则 lim ⁡ [ f ( x ) g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) \lim[f(x)g(x)]=\lim f(x)·\lim g(x) lim[f(x)g(x)]=limf(x)</
04-16 879
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值