3.1 极限的直觉化理解
动态演示思想
“当x无限接近某个值时,f(x)会稳定地逼近哪个数?”
当 x 接近 1 时,分子和分母都接近 0,但通过因式分解:
你会发现 f(x) 无限接近 2。这就是极限的本质:函数在某点的“趋势”,而非该点的实际值。
🌰 经典案例:
-
lim x → 2 ( x + 1 ) = 3 \lim_{x\to2} (x+1) = 3 limx→2(x+1)=3
(当x接近2时,x+1自然接近3) -
lim x → 0 sin x x = 1 \lim_{x\to0} \frac{\sin x}{x} = 1 limx→0xsinx=1
(著名的"小角近似"基础)
3.2 极限的严格定义(ε-δ语言)
小白友好版解读
“对于任意小的误差范围ε,总能找到x的接近程度δ,使得当x与a的距离小于δ时,f(x)与L的误差小于ε”
简单来说:**只要 x 足够接近 a ,f(x) 就能无限接近 L **。
📜 标准定义:
∀ ϵ > 0 , ∃ δ > 0 , 当 0 < ∣ x − a ∣ < δ 时 , ∣ f ( x ) − L ∣ < ϵ \forall \epsilon>0,\ \exists \delta>0,\ \text{当}\ 0<|x-a|<\delta\ \text{时},\ |f(x)-L|<\epsilon ∀ϵ>0, ∃δ>0, 当 0<∣x−a∣<δ 时, ∣f(x)−L∣<ϵ
理解流程图
3.3 极限计算方法和七大法则
(1)直接代入法
如果函数在 x = a 处有定义(如多项式、指数函数等),直接代入:
(2)因式分解法
适用于 0/0 型未定式(如开头的例子):
(3)有理化法
适用于根号减法的未定式:
分子有理化后:
法则名称 | 数学表达 | 使用条件 |
---|---|---|
四则运算法则 | lim [ f ( x ) ± g ( x ) ] = lim f ( x ) ± lim g ( x ) \lim[f(x)±g(x)]=\lim f(x)±\lim g(x) lim[f(x)±g(x)]=limf(x)±limg(x) | 各部分极限存在 |
乘法法则 | lim [ f ( x ) g ( x ) ] = lim f ( x ) ⋅ lim g ( x ) \lim[f(x)g(x)]=\lim f(x)·\lim g(x) lim[f(x)g(x)]=limf(x)</ |