机器人手臂的坐标变换:一步步计算齐次矩阵过程 [特殊字符]

大家好!今天我们来学习如何计算机器人手臂的坐标变换。别担心,我会用最简单的方式解释这个过程,就像搭积木一样简单!

一、理解问题

我们有一个机器人手臂,由多个关节组成。每个关节都有自己的坐标系,我们需要计算从世界坐标系(W)到末端执行器(P₃)的完整变换。

二、已知参数

  • α = 30° (绕Z轴旋转)
  • β = 20° (第一个关节绕X轴旋转)
  • γ = 30° (第二个关节绕X轴旋转)
  • L₁ = 2 (第一个连杆长度)
  • L₂ = 3 (第二个连杆长度)
  • L₃ = 4 (第三个连杆长度)

三、计算步骤

1. 世界坐标系(W)到基座(P₀)的变换 M₀

这是绕Z轴旋转30°的变换:
[
M_0 = \begin{bmatrix}
R_z(30°) & T \
0 & 1
\end{bmatrix}
]

计算旋转部分R_z(30°):
[
R_z(30°) = \begin{bmatrix}
\cos30° & -\sin30° & 0 \
\sin30° & \cos30° & 0 \
0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
0.866 & -0.5 & 0 \
0.5 & 0.866 & 0 \
0 & 0 & 1
\end{bmatrix}
]

<
04-16 879
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值