band steering功能测试

该测试详细描述了验证家庭网关WLAN band steering功能的过程,包括测试条件、步骤和通过标准。测试涉及双频客户端在不同信号质量和负载情况下的频段切换,以及RSSI阈值和检测间隔的设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

8.2	band steering功能测试
测试编号:8.2.1
测试项目:band steering功能测试
测试目的:验证家庭网关WLAN根据两个频段的信号质量及负载情况协同支持Band Steering的双频客户端进行频段切换
测试条件:
1.	家庭网关长按恢复出厂设置后,上电启动正常,配置2.4G11n、HT20、信道6、默认加密方式,5G 11ac、VHT80、信道157、默认加密方式;
2.	1台仅支持单频的STA1,1台支持双频(2.4GHz,5GHz)的STA2(例如小米5、三星S系列);
3.	1台STA3,用来在5G频段上打背景流;
4.	STA2上安装WiFi分析仪;
5.	STA2和STA3上安装IxChariot Endpoint。
测试步骤:
1.	通过DBUS接口gdbus call -y -d com.ctc.igd1 -o /com/ctc/igd1/Config/WLAN/BandSteering  -m com.ctc.igd1.Properties.GetAll com.ctc.igd1.WiFiBandSteering查询Enable、RSSIThrehold、RSSIThrehold5G和SteeringDetectInterval默认值;
2.	通过DUBUS接口开启双频合一和band steering功能:
gdbus call -y -d com.ctc.igd1 -o /com/ctc/igd1/Info/WiFi -m com.ctc.igd1.WiFiInfo.SetSameSSID 1 5
gdbus call -y -d com.ctc.igd1 -o /com/ctc/igd1/Config/WLAN/BandSteering -m com.ctc.igd1.Properties.Set com.ctc.igd1.WiFiBandSteering Enable "<true>"
3.	正确设置STA1的参数
<think>嗯,用户想了解如何在Simulink中搭建车辆状态观测器模型。首先,我需要回顾一下车辆状态观测器的基本概念。状态观测器通常用于估计车辆的一些难以直接测量的状态,比如侧向速度、横摆角速度等,这些在车辆动力学控制中很重要。常用的观测器有龙贝格观测器、卡尔曼滤波器等,可能用户需要了解具体选择哪一种。 接下来,得考虑Simulink的建模步骤。首先可能需要建立车辆动力学模型,比如二自由度或七自由度的模型,作为观测器的基础。然后,观测器部分需要设计状态方程和输出方程,可能要用到Simulink中的State-Space模块或者自己搭建微分方程模块。 用户可能对Simulink模块不熟悉,所以需要详细说明每个步骤。例如,如何将数学方程转化为Simulink中的模块连接,可能需要使用积分器、增益、加减器等。此外,卡尔曼滤波可能需要用到Matlab Function模块或者已有的Kalman Filter模块,但如果是扩展卡尔曼滤波,可能需要自己编写代码。 还要考虑输入输出信号,比如车辆的实际测量输入(如方向盘转角、轮速等),观测器的输出如何与模型输出比较,进行误差校正。可能需要用MATLAB Function处理非线性部分,或者使用S-Function。 另外,验证部分也很重要。用户可能需要知道如何通过仿真测试观测器的性能,比如加入噪声信号,查看估计结果与实际状态的对比。或者使用参考例子,比如Simulink自带的Vehicle Dynamics例子,是否有现成的观测器模型可以参考。 可能的误区:用户可能没有正确建立车辆模型,导致观测器设计不合理;或者参数设置错误,如系统矩阵不正确,导致观测器不收敛。需要提醒用户注意参数调整和验证步骤。 最后,是否需要提供具体的模块连接示意图或者示例模型结构?但由于是文字描述,可能需要分步骤说明,比如先搭建车辆模型,再设计观测器结构,然后连接反馈校正环节,最后测试验证。</think>以下是如何在Simulink中搭建车辆状态观测器模型的逐步说明: --- ### **步骤1:明确观测目标** 选择需要估计的车辆状态量,常见观测目标: - 纵向/侧向速度 - 横摆角速度 - 质心侧偏角 - 轮胎力(非线性观测) --- ### **步骤2:建立车辆动力学模型** 在Simulink中构建被观测系统: ```math $$ \begin{cases} M\dot{v}_x = Mv_y\omega + F_{x\_total} \\ M\dot{v}_y = -Mv_x\omega + F_{y\_total} \\ I_z\dot{\omega} = M_z \end{cases} $$ ``` 实现方法: 1. 使用`State-Space`模块输入系统矩阵 2. 或用基本模块搭建: - 加减法模块(Sum) - 积分器(Integrator) - 增益模块(Gain)表示质量/转动惯量 --- ### **步骤3:设计观测器核心结构** #### 方案A:龙贝格观测器 ```math $$ \dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x}) $$ ``` - 使用`State-Space`模块实现修正项 - 通过`Matrix Gain`设置观测器增益矩阵L #### 方案B:扩展卡尔曼滤波(EKF) 1. 创建`MATLAB Function`模块实现: - 状态预测方程 - 测量更新方程 2. 配合`Memory`模块存储协方差矩阵 --- ### **步骤4:配置传感器接口** 连接实际/仿真传感器输入: 1. 方向盘转角(Steering Angle) 2. 轮速传感器(Wheel Speed) 3. 横摆角速度传感器(通过`Inport`输入) --- ### **步骤5:实现误差反馈校正** 搭建闭环修正结构: 1. 用`Subtract`比较实际输出与估计输出 2. 通过`Gain`模块调节观测器带宽 3. 添加饱和限制(Saturation)防止发散 --- ### **步骤6:参数整定与验证** 关键调试方法: 1. 使用`PID Tuner`自动调节增益矩阵 2. 注入白噪声(Band-Limited White Noise模块)测试鲁棒性 3. 通过`Scope`对比真实状态与估计值曲线 --- ### **典型模型结构示意图** ``` [车辆模型] --> [传感器输出] ↓ [观测器] <-- [误差校正] ↑ | [控制输入]-----[状态估计输出] ``` --- ### **注意事项** 1. 非线性系统需验证观测器收敛性(通过Lyapunov函数) 2. 采样时间建议≤10ms(对应`Fixed-Step Solver`设置) 3. 优先使用双精度计算(`Data Type`设为double) 可通过`Vehicle Dynamics Blockset`中的参考案例(如`vdynobs`)快速获取模板模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值