第十三周 项目2 输入班级的人数及成绩三种方法(1和2)

<span style="font-size:18px;"><strong><em>第一种方法</em></strong></span>
<span style="font-size:18px;"><strong><em>/*
*copyright (c) 2014.烟大计算机学院
*All rights reserved.
*文件名称:
*作者:王争取
*完成日期:2014.11.24
*版 本 号:v1.0
*问题描述:成绩处理
*输入:输入班级的人数及成绩
*输出:输出该班级的最高成绩,最低成绩,平均成绩,
最高最低成绩的人数及学号,该班成绩的标准差
*/
#include <iostream>

using namespace std;

int main()
{
    int max(int x[],int n);
    int min(int x[],int n);
    int aver(int x[],int n);
    int num_max(int x[],int n,int m1);
    int num_min(int x[],int n,int m2);
    int n_max(int x[],int n,int m1);
    int n_min(int x[],int n,int m2);

    int m1,m2,n,score;
    cout<<"输入要统计的人数n"<<endl;
    cin>>n;

    int x[n],i;
    for(i=0; i<n; )
    {
        cout<<"输入第"<<i<<"位同学的成绩:";
        cin>>score;
        if(score<0||score>100) cout<<"请输入成绩在0-100的成绩"<<endl;
        else
        {
            x[i]=score;
            i++
        }
    }
    m1=max(x,n);
    m2=min(x,n);
    cout<<"最高成绩为:" <<m1<<"最低成绩为:"<<m2<<endl;
    cout<<"平均成绩为:"<<aver(x,n)<<endl;
    cout<<"取得最高成绩"<<m1<<"分的共"<<num_max(x,n,m1)<<"人"<<"他们的学号是:";
    n_max(x,n,m1);
    cout<<"取得最高成绩"<<m2<<"分的共"<<num_min(x,n,m2)<<"人" << "他们的学号是:";
    n_min(x,n,m2);
    return 0;
}
int max(int x[],int n)
{
    int m,i;
    for(i=0; i<n-1; i++)
        m=x[i]>x[i+1]?x[i]:x[i+1];
    return m;
}
int min(int x[],int n)
{

    int m,i;
    for(i=0; i<n-1; i++)
        m=x[i]<x[i+1]?x[i]:x[i+1];
    return m;
}
int aver(int x[],int n)
{
    int m,sum,i;
    for(i=0; i<n; i++)
        sum+=x[i];
    m=sum/n;
    return m;

}
int num_max(int x[],int n,int m1)
{
    int sum=0,i;
    for(i=0; i<n; i++)
        if(x[i]==m1)
            sum++;
    return sum;
}
int num_min(int x[],int n,int m2)
{
    int sum=0;
    for(int i=0; i<n; i++)
        if(x[i]==m2)
            sum++;
    return sum;
}
int n_max(int x[],int n,int m1)
{
    int i;
    for(i=0; i<n; i++)
    {
        if(x[i]==m1)
            cout<<i<<" ";
    }
}
int n_min(int x[],int n,int m2)
{
    int i;
    for(i=0; i<n; i++)
        if(x[i]==m2)
            cout<<i<<" ";
}</em></strong></span>
<span style="font-size:18px;"><strong><em><img src="" alt="" /></em></strong></span>
<span style="font-size:18px;"><strong><em>第二种排版(直接从上而下在main函数中编写)</em></strong></span>
<pre class="cpp" name="code">
#include <iostream>

#include <cmath>

using namespace std;

int main()
{

    int n,score,n1=0,n2=0,sum=0;
    cout<<"输入要统计的人数n:";
    cin>>n;
    int x[n],i,aver,max=-1,min=100;
    for(i=1; i<n+1; 1 )
    {
        cout<<"输入第"<<i<<"位同学的成绩:";
        cin>>score;
        if(score<0||score>100) cout<<"请输入成绩在0-100的成绩";
        else
        {
            x[i]=score;
            i++;
        }
    }
    for(i=1; i<n+1; i++)
        if(x[i]>max)max=x[i];
    for(i=1; i<n+1; i++)
        if(min>x[i])min=x[i];
    for(i=1; i<n+1; i++)
        sum+=x[i];
    aver=sum/n;
    for(i=1; i<n+1; i++)
        if(x[i]==max)
            n1++;
    for(int i=1; i<n+1; i++)
        if(x[i]==min)
            n2++;
    int s1=0,s;
    for(i=1; i<n+1; i++)
        s1+=(x[i]-aver)*(x[i]-aver);
    s=sqrt(s1/(n-1));
    cout<<"最高成绩为:" <<max<<"   最低成绩为:"<<min<<endl;
    cout<<"平均成绩为:"<<aver<<endl;
    cout<<"取得最高成绩"<<max<<"分的共"<<n1<<"人";
    cout<<"他们的学号是:";
    for(i=1; i<n+1; i++)
        if(x[i]==max)
            cout<<i<<" ";
    cout<<"取得最低成绩"<<min<<"分的共"<<n2<<"人" ;
    cout<< "他们的学号是:";
    for(i=1; i<n; i++)
        if(x[i]==min)
            cout<<i<<" ";
    cout<<"标准偏差是:"<<s<<endl;
    return 0;
}
<img src="" alt="" />







发布了193 篇原创文章 · 获赞 16 · 访问量 16万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览