深度学习训练滑动验证码(Yolov5)

注:本文只用于学习,如有问题请联系作者。

场景介绍

对于现在网络的大多数滑动验证码如果想用一个通用的方法还是需要用深度学习,用图像处理的方式对于单一类型还是比较好用的,多类型还是难以适用的。例如如下多种类型:

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
这里展示了5种类型不同的滑块,我们要做的就是准确的找到缺口的位置通过。
我这里使用的yolov5

项目开始

https://github.com/ultralytics/yolov5  
这里是yolov5 github可以了解更多
https://docs.ultralytics.com/
这是yolov5的官方文档

YOLO 是“You only look once”的首字母缩写词,是一种将图像划分为网格系统的对象检测算法。网格中的每个单元都负责检测自身内部的对象。

由于其速度和准确性,YOLO 是最著名的目标检测算法之一。

 git clone https://github.com/ultralytics/yolov5.git

打开项目
在这里插入图片描述

安装后配置环境然后启动train.py出现如下代表yolo配置成功
需要有cuda环境(需要用gpu训练) ,torch,torchvision,numpy等环境(自行解决)
在这里插入图片描述

yolov5超参数

train.py文件的454行parse_opt里面有很多启动脚本超参数,接受一下常用的:
在这里插入图片描述

  • weights
    选择预训练模型,默认ROOT / ‘yolov5m.pt’
  • cfg
    模型配置和网络结构的yaml文件路径
  • data
    数据集配置的yaml文件路径,包括数据集的路径,类名等关键信息
  • hyp
    超参数配置的yaml文件路径
  • epochs
    训练总轮次
  • batch-size
    每个轮次下图片训练的批次大小
  • imgsz
    图片默认尺寸
  • resume
    从给定的path/last.pt恢复训练,如果为空,则从最近保存的path/last.pt恢复训练,持续训练
  • device
    显卡选择
  • single-cls
    将所有数据按照一个类别进行训练(例如滑块只有一个缺口,则表示一种类型)
  • optimizer
    优化器选择
  • name
    训练完的保存的文件夹名称
  • exist-ok
    训练完文件夹不递增

如果有感兴趣的自行查询。

滑动验证码数据集

yolo有自己数据集的格式
我已经整理好了有4100张上述滑块类型
在这里插入图片描述
这里目录下分文图片和标签两个目录
在这里插入图片描述
图片和标签一样下面为一个test和train测试集和训练集
在这里插入图片描述
在这里插入图片描述
这里是yolo的数据集格式必须这个样子
在这里插入图片描述
我已经整理好了数据集并标注,如果你想自己训练自己的图片也可以也行标注但是格式必须是这个样子。
推荐一个标注的网站可以直接导出yolo格式

make-sense 是一个被YOLOv5官方推荐使用的图像标注工具
https://www.makesense.ai/

这个标注工具,具体使用https://blog.csdn.net/to_chariver/article/details/119619515看这个博主,很详细

配置数据集和超参数

在data下面创建一个Sliding.yaml的配置文件
在这里插入图片描述
这里配置完改了几个超参数如下:
在这里插入图片描述
我训练模型选择yolov5s,这是不同yolo模型的对比图。
在这里插入图片描述

训练开始并查看结果

配置好了就可以开始训练了,
在这里插入图片描述

可以看到已经有训练信息在跑了,等待训练完50轮我们就可以看结果啦。
这里解释一下信息中的参数都是什么:

  • Epoch
    训练轮数

  • gpu_mem
    gpu占用内存

  • box
    边界框损失 YOLO V5使用 GIOU Loss作为bounding box的损失,Box推测为GIoU损失函数均值,越小方框越准;

  • obj
    目标检测损失 推测为目标检测loss均值,越小目标检测越准;

  • cls
    分类损失 推测为分类loss均值,越小分类越准;(缺口只有一个类别所以为0没有浮动)

  • img_size
    图片尺寸默认为640

  • Images
    测试集图片个数849张

  • Labels
    测试集标签个数847张

  • P
    精度

  • R
    召回率

一般训练结果主要观察精度和召回率波动情况

详细解读请看
https://blog.csdn.net/sinat_37322535/article/details/117260081
这个博主

在这里插入图片描述
可以看到这里精度和召回率表现都很不错
训练结束后在目录下的runs/train/Sliding下生成一些训练结果的文件(这个目录可以自己设置)

在这里插入图片描述
看一下我们测试集的预测结果,val_batch_pred.jpg
在这里插入图片描述
Gap就是我们需要找到的地方,还有置信度
results.csv文件是训练具体的详细信息
在这里插入图片描述
最重要的是在weights目录下有两个pt模型,
在这里插入图片描述
最好的模型,和最后的模型,我们之后验证就可以用着模型进行验证

PT模型转onnx模型

项目中的export.py文件中的521行weights超参数将pt模型路径写入列入:
在这里插入图片描述
需要有onnx模块不然会报错,如果报异常 Onnx: No module named ‘onnx’
手动安装onnx模块然后在重试即可

在这里插入图片描述
在这个目录下可以看到last.onnx模型,接下来就是模型的单独调度。

验证模型

在detect.py文件中配置可以对模型进行检测
211行配置超参数
在这里插入图片描述

这里一定要配置成刚刚训练好的,模型路径
然后将想要测试的图片放入data/images下面,然后运行detect.py文件即可。
在这里插入图片描述
这里看到我保存在了runs/detect/Sliding目录下
在这里插入图片描述
这里的图片文件名称和data/images的文件名称一样可以看到,
在这里插入图片描述
成功看到返回缺口位置和置信度,这里已经预测成功,说明我们的模型已经训练成功了。
我将所有图片全部组合起来看起来方便。
图片合成代码

import os

import PIL.Image as Image


def resize_by_width(infile, image_size):
    """按照宽度进行所需比例缩放"""
    im = Image.open(infile)
    (x, y) = im.size
    lv = round(x / image_size, 2) + 0.01
    x_s = int(x // lv)
    y_s = int(y // lv)
    print("x_s", x_s, y_s)
    out = im.resize((x_s, y_s), Image.ANTIALIAS)
    return out


def get_new_img_xy(infile, image_size):
    """返回一个图片的宽、高像素"""
    im = Image.open(infile)
    (x, y) = im.size
    lv = round(x / image_size, 2) + 0.01
    x_s = x // lv
    y_s = y // lv
    # print("x_s", x_s, y_s)
    # out = im.resize((x_s, y_s), Image.ANTIALIAS)
    return x_s, y_s


# 定义图像拼接函数
def image_compose(image_colnum, image_size, image_rownum, image_names, image_save_path, x_new, y_new):
    to_image = Image.new('RGB', (image_colnum * x_new, image_rownum * y_new))  # 创建一个新图
    # 循环遍历,把每张图片按顺序粘贴到对应位置上
    total_num = 0
    for y in range(1, image_rownum + 1):
        for x in range(1, image_colnum + 1):
            from_image = resize_by_width(image_names[image_colnum * (y - 1) + x - 1], image_size)
            # from_image = Image.open(image_names[image_colnum * (y - 1) + x - 1]).resize((image_size,image_size ), Image.ANTIALIAS)
            to_image.paste(from_image, ((x - 1) * x_new, (y - 1) * y_new))
            total_num += 1
            if total_num == len(image_names):
                break
    return to_image.save(image_save_path)  # 保存新图


def get_image_list_fullpath(dir_path):
    file_name_list = os.listdir(dir_path)
    image_fullpath_list = []
    for file_name_one in file_name_list:
        file_one_path = os.path.join(dir_path, file_name_one)
        if os.path.isfile(file_one_path):
            image_fullpath_list.append(file_one_path)
        else:
            img_path_list = get_image_list_fullpath(file_one_path)
            image_fullpath_list.extend(img_path_list)
    return image_fullpath_list


def merge_images(image_dir_path,image_size,image_colnum):
    # 获取图片集地址下的所有图片名称
    image_fullpath_list = get_image_list_fullpath(image_dir_path)
    image_fullpath_list = [i  for i in image_fullpath_list if "crops" not in i]
    print("image_fullpath_list", len(image_fullpath_list), image_fullpath_list,"========")

    image_save_path = r'{}.jpg'.format(image_dir_path)  # 图片转换后的地址
    # image_rownum = 4  # 图片间隔,也就是合并成一张图后,一共有几行
    image_rownum_yu = len(image_fullpath_list) % image_colnum
    if image_rownum_yu == 0:
        image_rownum = len(image_fullpath_list) // image_colnum
    else:
        image_rownum = len(image_fullpath_list) // image_colnum + 1

    x_list = []
    y_list = []
    for img_file in image_fullpath_list:
        img_x, img_y = get_new_img_xy(img_file, image_size)
        x_list.append(img_x)
        y_list.append(img_y)

    print("x_list", sorted(x_list))
    print("y_list", sorted(y_list))
    x_new = int(x_list[len(x_list) // 5 * 4])
    y_new = int(x_list[len(y_list) // 5 * 4])
    image_compose(image_colnum, image_size, image_rownum, image_fullpath_list, image_save_path, x_new, y_new)  # 调用函数
    # for img_file in image_fullpath_list:
    #     resize_by_width(img_file,image_size)

if __name__ == '__main__':
    image_dir_path = r'/home/yons/pytorch/wang/yolov5-master/runs/detect/Sliding'  # 图片集地址
    image_size = 128  # 每张小图片的大小
    image_colnum = 10  # 合并成一张图后,一行有几个小图
    merge_images(image_dir_path, image_size, image_colnum)

在这里插入图片描述
可以看到测试结果还是非常不错的这是我32张的表现。

单张图片进行测试

yolo有接口测试就在utils下的flask_rest_api文件中restapi.py是服务端,example_requset.py是客户端,可以自行测试

我这里主要介绍脱离yolo,单独脚本进行测试,并返回坐标和预测图片。
代码从yolo源码中debug抠出来的,将pt模型转为onnx模型,在调用此脚本

import os
import sys
import time
from io import BytesIO

import onnxruntime
import torch
import torchvision

import numpy as np

import cv2

# 图像处理
from PIL import Image


def padded_resize(im, new_shape=(640, 640), stride=32):
    try:
        shape = im.shape[:2]

        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]
        # dw, dh = np.mod(dw, stride), np.mod(dh, stride)
        dw /= 2
        dh /= 2
        if shape[::-1] != new_unpad:  # resize
            im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
        im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # add border
        # Convert
        im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        im = np.ascontiguousarray(im)
        im = torch.from_numpy(im)
        im = im.float()
        im /= 255
        im = im[None]
        im = im.cpu().numpy()  # torch to numpy
        return im
    except:
        print("123")


def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def box_iou(box1, box2):
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.T)
    area2 = box_area(box2.T)

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    return inter / (area1[:, None] + area2 - inter)  # iou = inter / (area1 + area2 - inter)


def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
                        labels=(), max_det=300):
    """Runs Non-Maximum Suppression (NMS) on inference results

    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """

    nc = prediction.shape[2] - 5  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Checks
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

    # Settings
    min_wh, max_wh = 2, 7680  # (pixels) minimum and maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 10.0  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + 5), device=x.device)
            v[:, :4] = lb[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        box = xywh2xyxy(x[:, :4])

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
        else:  # best class only
            conf, j = x[:, 5:].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        elif n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        if i.shape[0] > max_det:  # limit detections
            i = i[:max_det]
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            break  # time limit exceeded

    return output


def xyxy2xywh(x):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
    y[:, 2] = x[:, 2] - x[:, 0]  # width
    y[:, 3] = x[:, 3] - x[:, 1]  # height
    return y


def is_ascii(s=''):
    # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
    s = str(s)  # convert list, tuple, None, etc. to str
    return len(s.encode().decode('ascii', 'ignore')) == len(s)


def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
    # Add one xyxy box to image with label
    if self.pil or not is_ascii(label):
        self.draw.rectangle(box, width=self.lw, outline=color)  # box
        if label:
            w, h = self.font.getsize(label)  # text width, height
            outside = box[1] - h >= 0  # label fits outside box
            self.draw.rectangle((box[0],
                                 box[1] - h if outside else box[1],
                                 box[0] + w + 1,
                                 box[1] + 1 if outside else box[1] + h + 1), fill=color)
            # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
            self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
    else:  # cv2
        p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
        cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
        if label:
            tf = max(self.lw - 1, 1)  # font thickness
            w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
            outside = p1[1] - h - 3 >= 0  # label fits outside box
            p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
            cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
            cv2.putText(self.im, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, self.lw / 3, txt_color,
                        thickness=tf, lineType=cv2.LINE_AA)


def return_coordinates(xyxy, conf):
    conf = float(conf.numpy())
    gain = 1.02
    pad = 10
    xyxy = torch.tensor(xyxy).view(-1, 4)
    b = xyxy2xywh(xyxy)  # boxes
    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
    xyxy = xywh2xyxy(b).long()
    c1, c2 = (int(xyxy[0, 0]) + 6, int(xyxy[0, 1]) + 6), (int(xyxy[0, 2]) - 6, int(xyxy[0, 3]) - 6)
    # print(f"leftTop:{c1},rightBottom:{c2},Confidence:{conf*100}%")
    result_dict = {"leftTop": c1, "rightBottom": c2, "Confidence": conf}
    return result_dict


def clip_coords(boxes, shape):
    # Clip bounding xyxy bounding boxes to image shape (height, width)
    if isinstance(boxes, torch.Tensor):  # faster individually
        boxes[:, 0].clamp_(0, shape[1])  # x1
        boxes[:, 1].clamp_(0, shape[0])  # y1
        boxes[:, 2].clamp_(0, shape[1])  # x2
        boxes[:, 3].clamp_(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0])  # y1, y2


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    clip_coords(coords, img0_shape)
    return coords


def onnx_model_main(path):
    # onnx
    session = onnxruntime.InferenceSession("模型路径", providers=["CPUExecutionProvider"])
    start = time.time()
    image = open(path, "rb").read()
    img = np.array(Image.open(BytesIO(image)))
    # img = cv2.imread(path)
    # 图像处理
    img = img[:, :, :3]
    im = padded_resize(img)
    # 模型调度
    pred = session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: im})[0]
    pred = torch.tensor(pred)
    pred = non_max_suppression(pred, conf_thres=0.60, iou_thres=0.60, max_det=1000)  # 大于百分之六十的置信度
    coordinate_list = []
    for i, det in enumerate(pred):
        det[:, :4] = scale_coords(im.shape[2:], det[:, :4], img.shape).round()
        for *xyxy, conf, cls in reversed(det):
            # 返回坐标和置信度
            coordinates = return_coordinates(xyxy, conf)
            coordinate_list.append(coordinates)
    # 坐标列表
    coordinate = sorted(coordinate_list, key=lambda a: a["Confidence"])
    # 用时
    duration = str((time.time() - start))
    if len(coordinate) == 0:
        data = {'message': 'error', 'time': duration}
    else:
        coordinate = coordinate[-1]
        x = coordinate.get('leftTop')[0]
        y = coordinate.get('leftTop')[1]
        w = coordinate.get('rightBottom')[0] - coordinate.get('leftTop')[0]
        h = coordinate.get('rightBottom')[1] - coordinate.get('leftTop')[1]
        point = f"{x}|{y}|{w}|{h}"
        data = {'message': 'success', 'time': duration, 'point': point}
        data.update(coordinate)
        print(data)
    return data





def drow_rectangle(coordinate, path):
    img = cv2.imread(path)
    # 画框
    result = cv2.rectangle(img, coordinate.get("leftTop"), coordinate.get("rightBottom"), (0, 0, 255), 2)
    cv2.imwrite("drow_rectangle.jpg", result)  # 返回圈中矩形的图片
    print("返回坐标矩形成功")


if __name__ == '__main__':
    coordinate_onnx = onnx_model_main("图片路径")
    drow_rectangle(coordinate_onnx, "图片路径")

结果测试

这里我们用一张图片经测试
在这里插入图片描述
返回结果:
用时340毫秒,如果模型提前加载预计100到200毫秒,速度还是可以的,置信度也有百分之九十八。同时返回坐标,包括左上角以及右下角。
在这里插入图片描述
标注缺口位置图片:
drow_rectangle.jpg:
在这里插入图片描述
经过反复测试模型的泛化性也不错,针对于单一缺口的滑块,算是通用模型了如果遇到比较难搞的进行标注,放入训练集就可以了,本身滑块缺口对于目标检测来说是比较简单的,只有一个类别,同时也不需要大量数据集我只用了4000多张就可以达到一个非常好的效果。

本文只是实战操作,如果有同样需求的朋友可以更快上手,yolo里面还很多值得学习的东西,感兴趣的可以自己去研究模型的推理,以及源码。如果想要数据集请在评论区留言。

  • 16
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 36
    评论
您好!对于深度学习中的滑动窗口裁剪图像数据训练的问题,我可以给您一些指导。 滑动窗口裁剪是一种常用的数据增强技术,它可以扩充训练数据集,提高模型的鲁棒性和泛化能力。下面是一个基本的步骤: 1. 定义窗口大小:首先,您需要确定滑动窗口的大小。这通常取决于您希望检测或分类的对象的大小。 2. 滑动窗口操作:将窗口在图像上滑动,每次滑动一定的步长(stride)。可以从左上角开始,按照设定的步长水平和垂直方向滑动窗口,直到覆盖整个图像。 3. 裁剪图像:每次滑动窗口时,将窗口内的图像裁剪下来作为一个训练样本。这个裁剪下来的图像可以作为输入数据,与相应的标签一起进行训练。 4. 数据增强:除了裁剪图像外,您还可以应用其他数据增强技术,例如旋转、缩放、翻转等。这将进一步增加训练数据的多样性和鲁棒性。 5. 训练模型:使用裁剪和增强后的图像数据集来训练深度学习模型。您可以选择适合您任务的网络结构,并使用常规的训练方法,如随机梯度下降(SGD)或自适应优化器(如Adam)。 需要注意的是,滑动窗口裁剪可能会导致数据集中存在大量重叠的样本,这可能会影响模型的训练效果。为了解决这个问题,您可以采用非极大值抑制(NMS)等技术来合并相似的检测结果。 希望这些信息对您有帮助!如果您有任何其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值