Hadoop——MapReduce(校招准备)

MapReduce概念

Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架;
Mapreduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个hadoop集群上。


Writable序列化

  • 序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储(持久化)和网络传输。
  • 反序列化就是将收到字节序列(或其他数据传输协议)或者是硬盘的持久化数据,转换成内存中的对象。
  • Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,header,继承体系等),不便于在网络中高效传输。所以,hadoop自己开发了一套序列化机制(Writable),精简、高效。

一、常用数据序列化类型

Java类型Hadoop Writable类型
booleanBooleanWritable
byteByteWritable
intIntWritable
floatFloatWritable
longLongWritable
doubleDoubleWritable
stringText
mapMapWritable
arrayArrayWritable

二、自定义bean对象实现序列化接口

1.自定义bean对象要想序列化传输,必须实现序列化接口,需要注意以下7项。
(1)必须实现Writable接口
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造
(3)重写序列化方法
(4)重写反序列化方法
(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写toString(),且用”\t”分开,方便后续用
(7)如果需要将自定义的bean放在key中传输,则还需要实现comparable接口,因为mapreduce框中的shuffle过程一定会对key进行排序

// 1 必须实现Writable接口
public class FlowBean implements Writable {

	private long upFlow;
	private long downFlow;
	private long sumFlow;

	//2 反序列化时,需要反射调用空参构造函数,所以必须有
	public FlowBean() {
		super();
	}

	/**
	 * 3重写序列化方法
	 * 
	 * @param out
	 * @throws IOException
	 */
	@Override
	public void write(DataOutput out) throws IOException {
		out.writeLong(upFlow);
		out.writeLong(downFlow);
		out.writeLong(sumFlow);
	}

	/**
	 * 4 重写反序列化方法 
5 注意反序列化的顺序和序列化的顺序完全一致
	 * 
	 * @param in
	 * @throws IOException
	 */
	@Override
	public void readFields(DataInput in) throws IOException {
		upFlow = in.readLong();
		downFlow = in.readLong();
		sumFlow = in.readLong();
	}

    // 6要想把结果显示在文件中,需要重写toString(),且用”\t”分开,方便后续用
	@Override
	public String toString() {
		return upFlow + "\t" + downFlow + "\t" + sumFlow;
	}

    //7 如果需要将自定义的bean放在key中传输,则还需要实现comparable接口,因为mapreduce框中的shuffle过程一定会对key进行排序
	@Override
	public int compareTo(FlowBean o) {
		// 倒序排列,从大到小
		return this.sumFlow > o.getSumFlow() ? -1 : 1;
	}
}

InputFormat数据切片机制

一、FileInputFormat切片机制

job提交流程源码详解

waitForCompletion()
submit();
// 1建立连接
	connect();	
		// 1)创建提交job的代理
		new Cluster(getConfiguration());
			// (1)判断是本地yarn还是远程
			initialize(jobTrackAddr, conf); 
	// 2 提交job
submitter.submitJobInternal(Job.this, cluster)
	// 1)创建给集群提交数据的Stag路径
	Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
	// 2)获取jobid ,并创建job路径
	JobID jobId = submitClient.getNewJobID();
	// 3)拷贝jar包到集群
copyAndConfigureFiles(job, submitJobDir);	
	rUploader.uploadFiles(job, jobSubmitDir);
// 4)计算切片,生成切片规划文件
writeSplits(job, submitJobDir);
	maps = writeNewSplits(job, jobSubmitDir);
		input.getSplits(job);
// 5)向Stag路径写xml配置文件
writeConf(conf, submitJobFile);
	conf.writeXml(out);
// 6)提交job,返回提交状态
status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials());

FileInputFormat源码解析(input.getSplits(job))

(1)找到你数据存储的目录。
(2)开始遍历处理(规划切片)目录下的每一个文件
(3)遍历第一个文件ss.txt
a)获取文件大小fs.sizeOf(ss.txt);
b)计算切片大小computeSliteSize(Math.max(minSize,Math.max(maxSize,blocksize)))=blocksize=128M
c)默认情况下,切片大小=blocksize
d)开始切,形成第1个切片:ss.txt—0:128M 第2个切片ss.txt—128:256M 第3个切片ss.txt—256M:300M(每次切片时,都要判断切完剩下的部分是否大于块的1.1倍,不大于1.1倍就划分一块切片)
e)将切片信息写到一个切片规划文件中
f)整个切片的核心过程在getSplit()方法中完成。
g)数据切片只是在逻辑上对输入数据进行分片,并不会再磁盘上将其切分成分片进行存储。InputSplit只记录了分片的元数据信息,比如起始位置、长度以及所在的节点列表等。
h)注意:block是HDFS上物理上存储的存储的数据,切片是对数据逻辑上的划分。
(4)提交切片规划文件到yarn上,yarn上的MrAppMaster就可以根据切片规划文件计算开启maptask个数。

FileInputFormat中默认的切片机制:

(1)简单地按照文件的内容长度进行切片
(2)切片大小,默认等于block大小
(3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
比如待处理数据有两个文件:

file1.txt    320M
file2.txt    10M

经过FileInputFormat的切片机制运算后,形成的切片信息如下:

file1.txt.split1   0~128
file1.txt.split2   128~256
file1.txt.split3   256~320
file2.txt.split1   0~10M

FileInputFormat切片大小的参数配置

通过分析源码,在FileInputFormat中,计算切片大小的逻辑:Math.max(minSize, Math.min(maxSize, blockSize));
切片主要由这几个值来运算决定

  • mapreduce.input.fileinputformat.split.minsize=1
    默认值为1
  • mapreduce.input.fileinputformat.split.maxsize= Long.MAXValue
    默认值Long.MAXValue

因此,默认情况下,切片大小=blocksize。
maxsize(切片最大值):参数如果调得比blocksize小,则会让切片变小,而且就等于配置的这个参数的值。
minsize (切片最小值):参数调的比blockSize大,则可以让切片变得比blocksize还大。

二、CombineTextInputFormat切片机制

关于大量小文件的优化策略
1)默认情况下TextInputformat对任务的切片机制是按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个maptask,这样如果有大量小文件,就会产生大量的maptask,处理效率极其低下。
2)优化策略
(1)最好的办法,在数据处理系统的最前端(预处理/采集),将小文件先合并成大文件,再上传到HDFS做后续分析。
(2)补救措施:如果已经是大量小文件在HDFS中了,可以使用另一种InputFormat来做切片(CombineTextInputFormat),它的切片逻辑跟TextFileInputFormat不同:它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个maptask。
(3)优先满足最小切片大小,不超过最大切片大小
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m
CombineTextInputFormat.setMinInputSplitSize(job, 2097152);// 2m
举例:0.5m+1m+0.3m+5m=2m + 4.8m=2m + 4m + 0.8m
// 9 如果不设置InputFormat,它默认用的是TextInputFormat.class

job.setInputFormatClass(CombineTextInputFormat.class)
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m
CombineTextInputFormat.setMinInputSplitSize(job, 2097152);// 2m

MapTask工作机制

1)问题引出
maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度。那么,mapTask并行任务是否越多越好呢?
2)MapTask并行度决定机制
一个job的map阶段MapTask并行度(个数),由客户端提交job时的切片个数决定。
3)MapTask工作机制
(1)Read阶段:Map Task通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。
(2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。
(3)Collect阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。
(4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。
溢写阶段详情:
步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。
步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。
步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当期内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。
(5)Combine阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。
当所有数据处理完后,MapTask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生成相应的索引文件output/file.out.index。
在进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并io.sort.factor(默认100)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。
让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。


Shuffle机制

Mapreduce确保每个reducer的输入都是按键排序的。系统执行排序的过程(即将map输出作为输入传给reducer)称为shuffle。
在这里插入图片描述
在这里插入图片描述
详细流程:
上面的流程是整个mapreduce最全工作流程,但是shuffle过程只是从第7步开始到第16步结束,具体shuffle过程详解,如下:
1)maptask收集我们的map()方法输出的kv对,放到内存缓冲区中
2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
3)多个溢出文件会被合并成大的溢出文件
4)在溢出过程中,及合并的过程中,都要调用partitoner进行分组和针对key进行排序
5)reducetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据
6)reducetask会取到同一个分区的来自不同maptask的结果文件,reducetask会将这些文件再进行合并(归并排序)
7)合并成大文件后,shuffle的过程也就结束了,后面进入reducetask的逻辑运算过程(从文件中取出一个一个的键值对group,调用用户自定义的reduce()方法)
3)注意
Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。
缓冲区的大小可以通过参数调整,参数:io.sort.mb 默认100M

partition分区

1)默认partition分区

public class HashPartitioner<K, V> extends Partitioner<K, V> {
  /** Use {@link Object#hashCode()} to partition. */
  public int getPartition(K key, V value, int numReduceTasks) {
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
  }
}
默认分区是根据key的hashCode对reduceTasks个数取模得到的。用户没法控制哪个key存储到哪个分区

2)自定义Partitioner步骤

(1)自定义类继承Partitioner,重新getPartition()方法

public class ProvincePartitioner extends Partitioner<Text, FlowBean> {
	@Override
	public int getPartition(Text key, FlowBean value, int numPartitions) {
// 1 获取电话号码的前三位
		String preNum = key.toString().substring(0, 3);
		
		int partition = 4;
		
		// 2 判断是哪个省
		if ("136".equals(preNum)) {
			partition = 0;
		}else if ("137".equals(preNum)) {
			partition = 1;
		}else if ("138".equals(preNum)) {
			partition = 2;
		}else if ("139".equals(preNum)) {
			partition = 3;
		}
		return partition;
	}
}

(2)在job驱动中,设置自定义partitioner:

job.setPartitionerClass(CustomPartitioner.class)

(3)自定义partition后,要根据自定义partitioner的逻辑设置相应数量的reduce task

job.setNumReduceTasks(5);

3)注意:

  • 如果reduceTask的数量> getPartition的结果数,则会多产生几个空的输出文件part-r-000xx;
  • 如果1<reduceTask的数量<getPartition的结果数,则有一部分分区数据无处安放,会Exception;
  • 如果reduceTask的数量=1,则不管mapTask端输出多少个分区文件,最终结果都交给这一个reduceTask,最终也就只会产生一个结果文件 part-r-00000;

Combiner合并

1)combiner是MR程序中Mapper和Reducer之外的一种组件
2)combiner组件的父类就是Reducer
3)combiner和reducer的区别在于运行的位置:
Combiner是在每一个maptask所在的节点运行
Reducer是接收全局所有Mapper的输出结果;
4)combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量
5)自定义Combiner实现步骤:
(1)自定义一个combiner继承Reducer,重写reduce方法

public class WordcountCombiner extends Reducer<Text, IntWritable, Text, IntWritable>{
	@Override
	protected void reduce(Text key, Iterable<IntWritable> values,
			Context context) throws IOException, InterruptedException {
		int count = 0;
		for(IntWritable v :values){
			count = v.get();
		}
		context.write(key, new IntWritable(count));
	}
}

(2)在job中设置:

job.setCombinerClass(WordcountCombiner.class);

数据倾斜&Distributedcache

1)数据倾斜原因
如果是多张表的操作都是在reduce阶段完成,reduce端的处理压力太大,map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜。
2)解决方案
在map端缓存多张表,提前处理业务逻辑,这样增加map端业务,减少reduce端数据的压力,尽可能的减少数据倾斜。
3)具体办法:采用distributedcache
(1)在mapper的setup阶段,将文件读取到缓存集合中
(2)在驱动函数中加载缓存。
job.addCacheFile(new URI(“file:/e:/mapjoincache/pd.txt”));// 缓存普通文件到task运行节点
4)实操案例:
详见:


ReduceTask工作机制

1)设置ReduceTask
reducetask的并行度同样影响整个job的执行并发度和执行效率,但与maptask的并发数由切片数决定不同,Reducetask数量的决定是可以直接手动设置:
//默认值是1,手动设置为4

job.setNumReduceTasks(4);

2)注意
(1)如果数据分布不均匀,就有可能在reduce阶段产生数据倾斜
(2)reducetask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个reducetask。
(3)具体多少个reducetask,需要根据集群性能而定。
(4)如果分区数不是1,但是reducetask为1,是否执行分区过程。答案是:不执行分区过程。因为在maptask的源码中,执行分区的前提是先判断reduceNum个数是否大于1。不大于1肯定不执行。
3)ReduceTask工作机制
(1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
(2)Merge阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。
(3)Sort阶段:按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。
(4)Reduce阶段:reduce()函数将计算结果写到HDFS上。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值