对整个数组中所有元素同时执行数学运算可以使得作用在整个数组上的函数运算 简单而又快速。
>>> def f(x):
... return 3*x**2 - 2*x + 7 ...
>>> f(ax)
array([ 8, 15, 28, 47]) >>>
NumPy 还为数组操作提供了大量的通用函数,这些函数可以作为 math 模块中类似 函数的替代。
>>> np.sqrt(ax)
array([ 1. , 1.41421356, 1.73205081, 2. ])
>>> np.cos(ax)
array([ 0.54030231, -0.41614684, -0.9899925 , -0.65364362]) >>>
使用这些通用函数要比循环数组并使用 math 模块中的函数执行计算要快的多。因 此,只要有可能的话尽量选择 NumPy 的数组方案。
底层实现中,NumPy 数组使用了 C 或者 Fortran 语言的机制分配内存。
也就是说, 它们是一个非常大的连续的并由同类型数据组成的内存区域。所以,你可以构造一个比 普通 Python 列表大的多的数组。比如,如果你想构造一个 10,000*10,000 的浮点数二 维网格。
>>> grid = np.zeros(shape=(10000,10000), dtype=float) >>> grid
array([[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.]])
>>>
所有的普通操作还是会同时作用在所有元素上。
>>> grid += 10
>>> grid
array([[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.],
...,
[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.]])
>>> np.sin(grid)
array([[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
...,
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111]])
>>>
关于 NumPy 有一点需要特别的主意,那就是它扩展 Python 列表的索引功能 - 特别 是对于多维数组。
>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) >>> a
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])
>>> # Select row 1 >>> a[1]
array([5, 6, 7, 8])
>>> # Select column 1 >>> a[:,1]
array([ 2, 6, 10])
>>> # Select a subregion and change it >>> a[1:3, 1:3]
array([[ 6, 7],
[10, 11]])
>>> a[1:3, 1:3] += 10 >>> a
array([[ 1, 2, 3, 4],
[ 5, 16, 17, 8],
[ 9, 20, 21, 12]])
>>> # Broadcast a row vector across an operation on all rows >>> a + [100, 101, 102, 103]
array([[101, 103, 105, 107],
[105, 117, 119, 111],
[109, 121, 123, 115]])
>>> a
array([[ 1, 2, 3, 4],
[ 5, 16, 17, 8],
[ 9, 20, 21, 12]])