题目
输入两个链表,找出它们的第一个公共节点。链表定义如下:
struct ListNode {
int value;
ListNode* next;
};
方法一:暴力查找
在第一个链表上顺序遍历每个节点,每遍历到一个节点的时候,在第二个链表上顺序遍历每个节点。如果第二个链表上的节点和第一个链表上的节点一样,就说明两个链表在节点上重合,于是就找到了公共的节点。但这种方法时间复杂度较高,如果链表的长度分别为m和n,时间复杂度达到了O(m*n),并不是很好的解决方法。
方法二:借助外部空间法
首先,经过分析我们发现两个有公共结点而部分重合的链表,拓扑形状看起来像一个Y,而不可能像X,如下图所示,两个链表在值为6的结点处交汇:
如果两个链表有公共结点,那么公共结点出现在两个链表的尾部。如果我们从两个链表的尾部开始往前比较,最后一个相同的结点就是我们要找的结点。But,在单链表中只能从头结点开始按顺序遍历,最后才能到达尾结点。最后到达的尾结点却要最先被比较,这是“后进先出”的特性。于是,我们可以使用栈的特点来解决这个问题:分别把两个链表的结点放入两个栈里,这样两个链表的尾结点就位于两个栈的栈顶,接下来比较两个栈顶的结点是否相同。如果相同,则把栈顶弹出接着比较下一个栈顶,直到找到最后一个相同的结点。在上述思路中,我们需要用两个辅助栈。如果链表的长度分别为m和n,那么空间复杂度是O(m+n)。这种思路的时间复杂度是O(m+n)。和最开始的蛮力法相比,时间效率得到了提高,相当于是用空间消耗换取了时间效率。
方法三:不用辅助空间
首先遍历两个链表得到它们的长度,就能知道哪个链表比较长,以及长的链表比短的链表多几个节点。在第二次遍历的时候,先在较长的节点上走若干步,接着同时在两个链表上遍历,找到的第一个相同的节点就是它们的公共的节点。这种思路的时间复杂度也是O(m+n),空间复杂度为O(1)。空间效率得到提升。
完整代码:
#include<iostream>
#include<stack>
using namespace std;
typedef struct ListNode {
int value;
ListNode* next;
ListNode(int v):value(v), next(NULL) {
}
} *List;
//方法1,暴力
ListNode* FindFirstCommonNode1(List head1, List head2) {
}
//方法2,借助栈
ListNode* FindFirstCommonNode2(List head1, List head2) {
if(!head1 || ! head2)
return NULL;
stack<ListNode*> s1, s2;
List p1 = head1, p2 = head2;
while(p1) {
s1.push(p1);
p1 = p1->next;
}
while(p2) {
s2.push(p2);
p2 = p2->next;
}
ListNode *common = NULL;
while(!s1.empty() && !s2.empty()) {
if(s1.top() == s2.top()) {
common = s1.top();
s1.pop();
s2.pop();
} else
break;
}
return common;
}
int getLength(List head) {
int len = 0;
List p = head;
while(p) {
len++;
p = p->next;
}
return len;
}
//方法3,不用辅助空间
ListNode* FindFirstCommonNode3(List head1, List head2) {
if(!head1 || ! head2)
return NULL;
int len1 = getLength(head1);
int len2 = getLength(head2);
int lendiff = len1 - len2;
List p_long = head1;
List p_short = head2;
if(len1 < len2) {
p_long = head2;
p_short = head1;
lendiff = len2 - len1;
}
for(int i=0; i<lendiff; i++)
p_long = p_long->next;
while(p_long != NULL && p_short != NULL && p_long != p_short) {
p_long = p_long->next;
p_short = p_short->next;
}
return p_long;
}
int main() {
}