Problem Description
今年的ACM暑期集训队一共有18人,分为6支队伍。其中有一个叫做EOF的队伍,由04级的阿牛、XC以及05级的COY组成。在共同的集训生活中,大家建立了深厚的友谊,阿牛准备做点什么来纪念这段激情燃烧的岁月,想了一想,阿牛从家里拿来了一块上等的牛肉干,准备在上面刻下一个长度为n的只由"E" "O" "F"三种字符组成的字符串(可以只有其中一种或两种字符,但绝对不能有其他字符),阿牛同时禁止在串中出现O相邻的情况,他认为,"OO"看起来就像发怒的眼睛,效果不好。
你,NEW ACMer,EOF的崇拜者,能帮阿牛算一下一共有多少种满足要求的不同的字符串吗?
PS: 阿牛还有一个小秘密,就是准备把这个刻有 EOF的牛肉干,作为神秘礼物献给杭电五十周年校庆,可以想象,当校长接过这块牛肉干的时候该有多高兴!这里,请允许我代表杭电的ACMer向阿牛表示感谢!
再次感谢!
Input
输入数据包含多个测试实例,每个测试实例占一行,由一个整数n组成,(0<n<40)。
Output
对于每个测试实例,请输出全部的满足要求的涂法,每个实例的输出占一行。
Sample Input
1 2
Sample Output
3 8
这个题有不同的解法,我AC之后,在discuss里看到基本都是找规律,最后得到公式:f(n) = f(n-2)*6 + 2*(f(n-1)-f(n-2)*2)=2(f(n-1) + f(n-2)),这是一种思路。
我做的想法比较简单粗暴:假设oo可以相邻,那就是3^n,然后减去oo相邻的次数就可以了。
n=1: f(1) = 3,可以去E,O,F任意一个,既字母 O=1
n=2: f(2) = 8, 上边的一个字母O 在这只能取两个非O的字母相邻,上边的两个非O字母,可以任意取E,O,F三个字母相邻,所以此时f(2) = f(1)*3 - o ps: 公式里的o就是N=1的时候的O的个数。
n=n, f(n) = f(n-1) * 3 - o o->o(n-1)
总的来说,第n-1次又多少个O,那么第n次就需要减O的个数,以避免OO相邻。
#include<iostream>
using namespace std;
int main()
{
int n;
while(cin>>n)
{
long long int a[40]={0},o=1;
a[0]=3;
for(int i=1;i<n;i++)
{
a[i]=3*a[i-1]-o;
o=a[i-1]-o;
}
cout<<a[n-1]<<endl;
}
}