给定14个分数,按以下顺序排列:
17/91 78/85 19/51 23/38 29/33 77/29 95/23
77/19 1/17 11/13 13/11 15/14 15/2 55/1
然后拿两张纸。在第一张上写下2。然后对照着以上14个分数,
按以下规定步骤产生两个数列:
如果 r 是你在第一张纸上写的上一个数,就从上面列出的14个分数中找出一个
分数,使得它乘上 r 以后得到一个整数(如果这样的分数不止一个,就取最前头
的那个)。把这个整数写在第一张纸上。如果产生的整数是 2 的方幂,比如说
2^n,就在第二张纸上写下 n。
照这个方法做下去,你在第二张纸上将得到一个什么样的数列呢?嘿嘿,你算过
以后会很惊奇的。它们是:2,3,5,7,11,13,17,19,23,......
这个东东是我在 Mathematical Intelligencer 80年的一期上看来的。写明是
由J.H. Conway 提出的问题。他问的意思是:后面这个数列是什么数列?
为什么?如果要产生前1000个素数,用这个方法要算多久?
<!-- google_ad_client = "pub-2416224910262877"; google_ad_width = 728; google_ad_height = 90; google_ad_format = "728x90_as"; google_ad_channel = ""; google_color_border = "E1771E"; google_color_bg = "FFFFFF"; google_color_link = "0000FF"; google_color_text = "000000"; google_color_url = "008000"; // -->