树-二叉树(前中后序遍历+按值查找+删除节点)

本文探讨了树作为一种数据结构的原因,分析了数组和链式存储的优缺点。重点介绍了二叉树的概念、术语,以及前中后序遍历的原理。此外,还讲解了如何在二叉树中查找节点,删除节点的基本策略,以及顺序存储二叉树和线索化二叉树的概念。
摘要由CSDN通过智能技术生成

1.为什么需要树这种数据结构:

1)数组存储方式的分析:

优点:通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。

缺点:如果要检索具体某个值,或者,或者插入值(按一定顺序)会整体移动,效率较低。

如ArrayList数组扩容:每次在底层都需要创建新数组,再将原来的数据拷贝到数组中,并插入新的数据。

2)链式存储方式的分析

优点:在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接道链表中即可,删除效率也很好)。

缺点:在进行检索时,效率仍然较低,比如(检索某个值,需要从你个头节点开始遍历)。

3)树存储方式的分析

能提高数据存储,读取的效率,比如利用二叉排序树,既可以保证数据的检索速度,同时也可以保证数据的插入、删除、修改的速度。

2.二叉树

在这里插入图片描述

树的常用术语:

1)节点;2)根节点;3)父节点;4)子节点;5)叶子节点(没有子节点的节点);6)节点的权(节点值);7)路径(从根节点找到该节点的路线);8)层;9)子树;10)树的高度(最大层数);11)森林(多棵子树构成森林)。

二叉树的概念

1)树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。

2)二叉树的子节点分为左节点和右节点。

在这里插入图片描述

3)如果该二叉树的所有叶子节点都在最后一层,并且节点总数=2^n-1,n为层数,则我们称为满二叉树。

4)如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树。

区别:

完全二叉树:设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边。

满二叉树:深度为k且有2^k-1个结点的二叉树称为满二叉树。

二叉树的遍历:

前序遍历:先输出父节点,再遍历左子树和右子树;

中序遍历:先遍历左子树,再输出父节点,再遍历右子树;

后序遍历:先遍历左子树,再遍历右子树,最后输出父节点。

小结:看输出父节点的顺序,就确定是前序、中序还是后序。

遍历步骤:

1.创建一颗二叉树;

2.前序遍历:先输出当前节点(初始的时候是根节点),然后如果左子节点不为空,则递归继续前序遍历;如果右子节点不为空,则递归继续前序遍历。

3.中序遍历:如果当前节点的左子节点不为空,则递归继续中序遍历,然后输出当前节点;如果右子节点不为空,则递归继续中序遍历。

4.后序遍历:如果当前节点的左子节点不为空,则递归继续后序遍历;如果右子节点不为空,则递归继续后序遍历࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值