python DFS与BFS遍历

本文介绍了如何使用广度优先遍历(BFS)和深度优先遍历(DFS)来遍历图。BFS通过队列实现,适用于寻找最短路径;DFS则利用栈,可以随机选择路径。示例代码展示了在Python中如何对图进行这两种遍历。
摘要由CSDN通过智能技术生成

图的广度优先遍历,采用队列(queue)实现 ,先进先出

graph={
    "A":["B","C"],
    "B":["A","C","D"],
    "C":["A","B","D","E"],
    "D":["B","C","E","F"],
    "E":["C","D"],
    "F":["D"]
}#用字典建立一个图

def BFS(graph,s):
    queue=[]
    queue.append(s)
    seen=set()
    seen.add(s)
    while(len(queue)>0):
        vertex=queue.pop(0)
        nodes=graph[vertex]#邻接点
        for n in nodes:
            if n not in seen:
                queue.append(n)
                seen.add(n)
        print(vertex)

BFS(graph,"A")

可用于求最短路径,此处为A-D,运用邻接表

def BFS(graph,s):
    queue=[]
    queue.append(s)
    seen=set()
    seen.add(s)
    parent={s:None}
    while(len(queue)>0):
        vertex=queue.pop(0)
        nodes=graph[vertex]#邻接点
        for n in nodes:
            if n not in seen:
                queue.append(n)
                seen.add(n)
                parent[n]=vertex#vertex相当于根节点
    return parent
parent=BFS(graph,"D")
v="A"
while v!=None:
    print(v)
    v=parent[v]

图的深度优先遍历,用栈(stack)实现 

def DFS(graph,s):
    stack=[]
    stack.append(s)
    seen=set()
    seen.add(s)
    while(len(stack)>0):
        vertex=stack.pop()
        nodes=graph[vertex]#邻接点
        for n in nodes:
            if n not in seen:
                stack.append(n)
                seen.add(n)
        print(vertex)

DFS(graph,"A")

可改为随机选择路径

import random

#将for n in nodes改为

for n in random.sample(nodes,len(nodes)):

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值