有关DFS的基础总结

感觉是不错的文章 收藏一下

一、深度优先搜索

深度优先搜索算法(Depth First Search),是图论中的经典算法。
深度优先搜索算法是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当结点所有子结点那一层都被搜索过,再回溯返回到当前结点的邻结点,继续搜索,直到遍历完整棵树。一般采用的是前序遍历,先根然后再左右结点的方式进行。
一些经典的问题,比如八皇后、马走日、迷宫等,都可以通过深度优先搜索算法来解决。
为了方便描述,下文用DFS来做为深度优先搜索算法的简称。

二、我对DFS的认识
对于DFS,我相信很多人第一次接触很难设计出相应的算法,即便是有不错的编程经验。我第一次几乎没办法设计出解决八皇后的算法,即便是想了很久。最后没办法只好参照别人写的递归式的DFS。之后,虽然对这个算法有一点了解,但由于了解不够深度,过了几天就记不得了,下次又完全不知道怎么入手。然后需要再到网上搜下代码,看一遍后大概才双知道。而且发现每次写代码的时候心里总觉得不踏实,一开始总有错误的地方,并且每次写的代码都有些不同。总之,写过很多次后,依然是停留到了解的阶段,没办法进一步提升,特别是非递归式的DFS一直都停留到靠脑力记忆而不是理解的阶段。

今天周末有点时间,觉得有必要解决这些问题,试着花时间去归纳总结DFS的本质,看能否做到一劳永逸。
我设定的目标是:
1、不仅停留到理解阶段,而是要知道这个算法每一步的实现
2、捉住其中的本质,给出这个算法的设计框架。
3、在1与2的基础中,可以熟练写出递归与非递归两种实现方式 。

经过一个下午的研究,我发现任何DFS只需要通过下面几步就可以实现,无论是递归还是非递归方式。我给这几步分别做了一个命名,分别是find、forward、done、back。
如下:
1、find(right):在树的当前层,横向遍历,尝试找到ok的节点。(这一步通常被叫做剪枝,只留下ok的。)
2、forward(down):若在当前层找到ok的结点,并且当前层不是最后一层:把ok的节点放到当前层;进入下一层第一个结点。跳到find
3、done(right):若在当前层找到ok的结点,并且当前层是最后一层:打印出结果;进入当前层的下一个结点。跳到find
4、back(up):在当前层没有找到ok的节点:返回上一层当前结点的下一个兄弟节点。跳到find

其实最重要的是find。然后后面的forward、done、back只是用来控制搜索走向。这四步可以进一步总结成两步。
为了了解算法,我想最好的切入方式是从一些实例开始。下面分别从八皇后以及马走日等问题做为切入点来分析DFS

三、用DFS解八皇后

1、问题描述
八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?
也就是说,使得棋盘中每个横向、纵向、左上至右下斜向、右上至左下斜向均只有一枚皇后。
八皇后有92组解,下面给出其中一种解的图例:

Image

2、 问题分析

规则是每一个皇后与前面的所有皇后不能在同一行、同一列、同一对角线。我们可以从第0行,第0列开始摆放,然后按照深度优先的原则,按照规则往更下面的行摆放皇后,直到摆放完8行。因为解不只一个,当某一行(包括最后一行跟最后一行之前的所有行)的所有列都被尝试过,再回溯返回到上一行,继续深度优先,直到遍历完整个棋盘的所有情况。得出所有的解。
八皇后问题可以看成是在深度为8的8叉树中,找出所有的解。

3、代码实现

递归算法:

 
 
  1. #include <stdio.h>
  2. #include <math.h>
  3.  
  4. /*八皇后问题是在8*8的棋盘上放置8枚皇后,使得棋盘中每个横向、纵向、左上至右下斜向、右上至左下斜向均只有一枚皇后。
  5. 求解出所有摆法,一共有92种摆法*/
  6.  
  7. const int N = 8; //棋盘行数
  8. int a[N] = {0}; //表示棋盘,若a[2]=2,则表示在第3行第2列放一个皇后,因为同一行不能放两个皇后,所以只需要1维数组就可以表示一个棋盘。
  9.  
  10. int solution = 0;//解的个数
  11.  
  12. //row行,col列, 是否可以摆皇后
  13. bool IsOK(int row, int col)
  14. {
  15. for (int i = 0; i < row; i++)
  16. {
  17. if (a[i] == col || (abs(a[i] - col) == row - i))
  18. {
  19. return false;
  20. }
  21. }
  22. return true;
  23. }
  24.  
  25. void Display()
  26. {
  27. printf("第%d种解:\n",++solution);
  28. for (int i = 0; i < N; i++)
  29. {
  30. for (int j = 0; j < N; j++)
  31. {
  32. if (a[i] == j)
  33. {
  34. printf("%d", i);
  35. }
  36. else
  37. {
  38. printf("#");
  39. }
  40. }
  41. printf("\n");
  42. }
  43.  
  44. printf("-----------------\n");
  45. }
  46.  
  47. void DSF(int row)
  48. {
  49. for (int col = 0; col < N; col++)
  50. {
  51. //find
  52. if (IsOK(row, col))
  53. {
  54. a[row] = col;
  55. //forward
  56. if (row != N -1)
  57. {
  58. DSF(row + 1);
  59. }
  60. else
  61. {
  62. //done
  63. Display();
  64. }
  65. }
  66. }
  67. //back
  68. }
  69.  
  70. int main()
  71. {
  72. DSF(0);
  73. return 0;
  74. }

非递归算法:

 
 
  1. #include <stdio.h>
  2. #include <math.h>
  3. #include <stack>
  4. using namespace std;
  5. /*八皇后问题是在8*8的棋盘上放置8枚皇后,使得棋盘中每个横向、纵向、左上至右下斜向、右上至左下斜向均只有一枚皇后*/
  6.  
  7. const int N = 8; //棋盘行数
  8. int a[N] = {0}; //表示棋盘,若a[2]=2,则表示在第3行第2列放一个皇后,因为同一行不能放两个皇后,所以只需要1维数组就可以表示一个棋盘。
  9.  
  10. int solution = 0;//解的个数
  11.  
  12. struct Node
  13. {
  14. int row;
  15. int col;
  16. };
  17.  
  18. //row行,col列, 是否可以摆皇后
  19. bool IsOK(Node node)
  20. {
  21. for (int i = 0; i < node.row; i++)
  22. {
  23. if (a[i] == node.col || (abs(a[i] - node.col) == node.row - i))
  24. {
  25. return false;
  26. }
  27. }
  28. return true;
  29. }
  30.  
  31. //打印出所有解
  32. void Print()
  33. {
  34. printf("第%d种解:\n", ++solution);
  35. for (int i = 0; i < N; i++)
  36. {
  37. for (int j = 0; j < N; j++)
  38. {
  39. if (a[i] == j)
  40. {
  41. printf("%d", i);
  42. }
  43. else
  44. {
  45. printf("#");
  46. }
  47. }
  48. printf("\n");
  49. }
  50.  
  51. printf("-----------------\n");
  52. }
  53.  
  54. void DSF()
  55. {
  56. Node node;
  57. stack stack;
  58. node.row = 0;
  59. node.col = 0;
  60. stack.push(node);
  61. while(stack.size() >= 1)
  62. {
  63. //--find
  64. node = stack.top();
  65. while (node.col < N && !IsOK(node))
  66. {
  67. node.col++;
  68. }
  69. if (node.col < N)
  70. {
  71. //--forward
  72. if (node.row < N-1)
  73. {
  74. //把ok的节点放到当前层
  75. a[node.row] = node.col;
  76. stack.pop();
  77. stack.push(node);
  78. //进入下一层的第一个节点
  79. node.row++;
  80. node.col = 0;
  81. stack.push(node);
  82. }
  83. else
  84. {
  85. //--done
  86. a[node.row] = node.col;
  87. Print();
  88. //进入当前层的下一个结点
  89. //node = stack.top();
  90. node.col++;
  91. stack.pop();
  92. stack.push(node);
  93. }
  94. }
  95. else
  96. {
  97. //--back
  98. stack.pop();
  99. if (stack.size() == 0)
  100. {
  101. return;
  102. }
  103. node = stack.top();
  104. node.col++;
  105. stack.pop();
  106. stack.push(node);
  107. }
  108. }
  109. }
  110. int main()
  111. {
  112. DSF();
  113. return 0;
  114. }

三、马走日

1、问题描述
在n*n的棋盘中,马只能走"日"字。马从位置(0,0)出发,把棋盘的每一格都走一次且只走一次。找出所有路径。 5*5的棋盘上,有304种解。
下面是其中一种路径的图例:

Image

2、问题分析
搜索过程是从(0,0)出发,按照深度优先的原则,从8个方向中尝试一个可以走的点,直到尝试过所有的方向,走完棋盘上的所有点,得出所有的解。
马走日问题可以看成是在层数为n*n的8叉树中,找出所有的解。

3、代码实现
同样的,也可以把上面的算法框架,套用于马走日的身上。
递归算法:

 
 
  1. #include <stdio.h>
  2.  
  3. /*马走日*/
  4.  
  5. const int N = 5; //棋盘行数跟列数
  6. int matrix[N][N] = {0}; //表示棋盘
  7. int solution = 0;//解的个数
  8. int count = 0; //第几步
  9. int move[8][2]={{-1,-2},{-2,-1}, {-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2}};//八个方向
  10.  
  11. //在棋盘范围内,而且可放棋
  12. bool IsOK(int x, int y)
  13. {
  14. if(( x <= N-1 ) && (x >=0 )
  15. && (y <= N-1 ) && (y >=0 )
  16. && (matrix[x ][y ]==0 ))
  17. {
  18. return true;
  19. }
  20. else
  21. {
  22. return false;
  23. }
  24. }
  25.  
  26.  
  27. //打印出所有解
  28. void Display()
  29. {
  30. printf("第%d种解:\n",++solution);
  31. for (int i = 0; i < N; i++)
  32. {
  33. for (int j = 0; j < N; j++)
  34. {
  35. printf("%3d",matrix[i][j]);
  36. }
  37. printf("\n");
  38. }
  39. printf("-----------------\n");
  40. }
  41. void DFS(int x, int y)
  42. {
  43. int nextX, nextY;
  44.  
  45.  
  46. for (int i = 0; i < 8; i++)
  47. {
  48. nextX = x + move[i][0];
  49. nextY = y + move[i][1];
  50. //--find
  51. if (IsOK(nextX, nextY))
  52. {
  53. if (count != N*N -1 )
  54. {
  55. //--forward
  56. count++;
  57. matrix[nextX][nextY] = count;
  58. DFS(nextX, nextY);
  59. matrix[nextX][nextY] = 0;
  60. count--;
  61. }
  62. else
  63. {
  64. //--done
  65. Display();
  66. }
  67. }
  68. }
  69. //--back
  70. }
  71.  
  72. int main()
  73. {
  74. matrix[0][0] = 1;
  75. count = 1;
  76. DFS(0, 0);
  77. return 0;
  78. }

非递归算法:

 
 
  1. #include <stdio.h>
  2. #include <stack>
  3. using namespace std;
  4.  
  5. /*马走日*/
  6.  
  7. const int N = 5; //棋盘行数跟列数
  8. int matrix[N][N] = {0}; //表示棋盘
  9. int solution = 0;//解的个数
  10. int count = 0; //第几步
  11. int move[8][2]={{-1,-2},{-2,-1}, {-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2}};//八个方向
  12.  
  13. //注意find这一步当前层的的结点,结点的坐标不是x与y,而通过Node中的x与y与direction三者计算后得到当前层的结点
  14. struct Node
  15. {
  16. int x;
  17. int y;
  18. int direction;
  19. };
  20.  
  21. //在棋盘范围内,而且可放棋
  22. bool IsOk(Node node)
  23. {
  24. int x, y;
  25. x = node.x + move[node.direction][0];
  26. y = node.y + move[node.direction][1];
  27. if(( x <= N-1 ) && (x >=0 )
  28. && (y <= N-1 ) && (y >=0 )
  29. && (matrix[x][y]==0 ))
  30. {
  31. return true;
  32. }
  33. else
  34. {
  35. return false;
  36. }
  37. }
  38.  
  39. //打印
  40. void Print()
  41. {
  42. printf("第%d种解:\n",++solution);
  43. for (int i = 0; i < N; i++)
  44. {
  45. for (int j = 0; j < N; j++)
  46. {
  47. printf("%3d",matrix[i][j]);
  48. }
  49. printf("\n");
  50. }
  51. printf("-----------------\n");
  52. }
  53.  
  54.  
  55. void DFS()
  56. {
  57. Node node;
  58. stack stack;
  59. int x, y;
  60. count = 1;
  61. node.x = 0;
  62. node.y = 0;
  63. node.direction = 0;
  64. matrix[0][0] = count++;
  65. stack.push(node);
  66. node.direction = 0;
  67. stack.push(node);
  68. while(stack.size() >= 2)
  69. {
  70. //--find
  71. node = stack.top();
  72. while (node.direction < 8 && !IsOk(node))
  73. {
  74. node.direction++;
  75. }
  76. if (node.direction < 8)
  77. {
  78. //--forward
  79. if (count < N * N)
  80. {
  81. //把ok的节点放到当前层
  82. stack.pop();
  83. stack.push(node);
  84. x = node.x + move[node.direction][0];
  85. y = node.y + move[node.direction][1];
  86. matrix[x][y] = count++;
  87. //进入下一层的第一个节点
  88. node.x = x;
  89. node.y = y;
  90. node.direction = 0;
  91. stack.push(node);
  92. }
  93. else
  94. {
  95. //--done
  96. //打印出结果;
  97. x = node.x + move[node.direction][0];
  98. y = node.y + move[node.direction][1];
  99. matrix[x][y] = count++;
  100. Print();
  101. //注意先清除当前结点的数据
  102. matrix[x][y] = 0;
  103. count--;
  104. //进入当前层的下一个结点;
  105. node.direction++;
  106. stack.pop();
  107. stack.push(node);
  108. }
  109. }
  110. else
  111. {
  112. //----back
  113. //返回上一层当前结点的下一个节点
  114. stack.pop();
  115. if (stack.size() == 1)
  116. {
  117. return;
  118. }
  119. node = stack.top();
  120. //注意先清除当前结点的数据
  121. x = node.x + move[node.direction][0];
  122. y = node.y + move[node.direction][1];
  123. matrix[x][y] = 0;
  124. count--;
  125. node.direction++;
  126. stack.pop();
  127. stack.push(node);
  128. }
  129. }
  130. }
  131. int main()
  132. {
  133. DFS();
  134. return 0;
  135. }

四、DFS有更多的变种,但都可以通过上面所说的四个步骤云解决。未完,待续。。。。

五、代码:
https://github.com/helloitworks/algorithm/tree/master/dfs

(转载本站文章请注明出处 www.helloitworks.com ,请勿用于任何商业用途)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值