【视觉-语言导航-多模态Transformer】谷歌2021年最新提出-用于视觉-语言导航的多模态Transformer,Episodic Transformer

Episodic Transformer是2021年由Inria、谷歌和布朗大学提出的,用于视觉-语言导航任务的创新模型。该模型在ALFRED基准上实现了SOTA性能,并且开源。其解决了长序列子任务处理和复杂指令理解的挑战,通过多模态Transformer和合成指令训练提升代理对自然语言的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Episodic Transformer for Vision-and-Language Navigation

前言:

由Inria, 谷歌, 布朗大学2021年最新提出的Episodic Transformer,多模态Transformer网络,这是一种用于视觉-语言导航任务的多模态Transformer网络,在ALFRED基准上表现SOTA,而且代码开源!
在这里插入图片描述

Transformer微信交流群

我们建立了Transformer微信交流群,

关注公众号:菜鸡Ai

后台回复:加群

备注:学校|公司+昵称+方向 会有小哥哥拉你进群。

论文获取

公众号后台回复:ET

解决什么问题

本文着重解决两个的挑战:
1、处理长序列的子任务
2、理解复杂的人工指令。

方法及实现

1、提出了Episodic Transformer(

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小菜学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值