齐次和非齐次线性方程组和非线性方程组的求解

1.非齐次线性方程组的求解

AX=b为非齐次线性方程组的向量表示

求解方法1就是上面所述,其中求解方法2解决求解方法1中ATA不可逆或括号中计算过程过于麻烦的问题。

2.齐次线性方程组的求解

AX=0为齐次线性方程组的向量表示

当p>q的时候

A进行SVD分解后的V矩阵正好是ATA的特征向量构建的矩阵,所以方法一和方法二一样

3. 非线性方程组

  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
齐次线性方程组可以表示为$Ax=b$的形式,其中$A$是系数矩阵,$x$是未知数向量,$b$是常数向量。求解齐次线性方程组的经典方法是高斯-约旦消元法。 具体步骤如下: 1.将增广矩阵$[A|b]$进行初等行变换,将其化为阶梯形矩阵。 2.从最后一行开始,逐行求解$x_i$,也就是将该行中$x_i$以外的系数都代入到该行中,从而求出$x_i$的值。 3.倒推回去,依次求解$x_{i-1}$、$x_{i-2}$,直到求出$x_1$。 代码实现如下: ```c++ #include <iostream> #include <cmath> using namespace std; int main() { const int N = 3; //方程组的阶数 double a[N][N] = { {2, 1, -1}, {4, -6, 0}, {-2, 7, 2} }; //系数矩阵 double b[N] = { 8, -2, 14 }; //常数向量 double x[N]; //未知数向量 for (int k = 0; k < N - 1; k++) { for (int i = k + 1; i < N; i++) { double temp = a[i][k] / a[k][k]; for (int j = k; j < N; j++) a[i][j] -= temp * a[k][j]; b[i] -= temp * b[k]; } } x[N - 1] = b[N - 1] / a[N - 1][N - 1]; for (int i = N - 2; i >= 0; i--) { double temp = b[i]; for (int j = i + 1; j < N; j++) temp -= a[i][j] * x[j]; x[i] = temp / a[i][i]; } cout << "The solution of the linear equations is:" << endl; for (int i = 0; i < N; i++) cout << "x[" << i << "]=" << x[i] << endl; return 0; } ``` 上述代码中,$a$数组表示系数矩阵,$b$数组表示常数向量,$x$数组表示未知数向量。在第一个循环中,进行高斯-约旦消元法的初等行变换,将增广矩阵化为阶梯形矩阵。在第二个循环中,倒推回去,依次求解未知数$x_i$的值。最后输出$x$数组即为齐次线性方程组的解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值