poj 2455(二分加网络流(dinic))

本文介绍了一种解决最大流问题的有效算法——Dinic算法,并提供了详细的C++代码实现。该算法通过构建增广路径来逐步增加从源点到汇点的流量,直至无法找到新的增广路径为止。此外,还结合了二分查找技巧来优化求解特定条件下的最小费用流问题。
摘要由CSDN通过智能技术生成

处理重边,想不出什么好的方法。。只好用了前向星来写邻接表存储。。。。不是很难不多说什么了。。。。



#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int maxM = 80005;
const int inf = INT_MAX;
#define CC(m,v) memset(m,v,sizeof(m))

struct node {
    int u, v, f, next;
} edge[maxM];
int head[maxM], p = 0, lev[maxM], val[maxM], cur[maxM];
int que[maxM];

inline void init1() {
    p = 0, CC(edge, 0), CC(head, -1), CC(val, 0);
}

inline void addedge(int u, int v, int f) { // 无向图
    edge[p].u = u, edge[p].v = v, val[p] = f, edge[p].next = head[u], head[u] = p++;
    edge[p].u = v, edge[p].v = u, val[p] = f, edge[p].next = head[v], head[v] = p++;
}

bool bfs(int s, int t) {
    int fir, en, u, v, i, j;
    memset(lev, 0, sizeof (lev));
    lev[s] = 1, que[0] = s, fir = 0, en = 1;
    while (fir != en) {
        u = que[fir++];
        for (i = head[u]; i != -1; i = edge[i].next)
            if (edge[i].f > 0 && lev[v = edge[i].v] == 0) {
                lev[v] = lev[u] + 1, que[en++] = v;
                if (v == t) {
                    fir = en;
                    break;
                }
            }
    }
    return lev[t];
}

int dinic(int s, int t) {
    int u, v, i, j, k, iq, f;
    int flow = 0;
    while (bfs(s, t)) {
        memcpy(cur, head, sizeof (head));
        u = s, iq = 0;
        while (1) {
            if (u == t) {
                for (k = 0, f = inf; k < iq; k++)
                    if (edge[que[k]].f < f)
                        f = edge[que[k]].f, j = k;
                for (k = 0; k < iq; k++)
                    edge[que[k]].f -= f, edge[que[k]^1].f += f;
                flow += f, u = edge[que[iq = j]].u;
            }
            for (j = cur[u]; cur[u] != -1; j = cur[u] = edge[cur[u]].next)
                if (edge[j].f > 0 && lev[u] + 1 == lev[edge[j].v]) break;
            if (cur[u] != -1) {
                que[iq++] = cur[u];
                u = edge[cur[u]].v;
            } else {
                if (iq == 0) break;
                lev[u] = -1;
                u = edge[que[--iq]].u;
            }
        }
    }
    return flow;
}

int main() {
    int ni, pi, ti, ai, bi, li;
    int i, j, lef, rig, mid;
    while (scanf("%d%d%d", &ni, &pi, &ti) != -1) {
        init1();
        lef = inf, rig = -1;
        for (i = 0; i < pi; i++) {
            scanf("%d%d%d", &ai, &bi, &li);
            addedge(ai, bi, li);
            if (li < lef) lef = li;
            if (li > rig) rig = li;
        }
        while (lef <= rig) {
            mid = (lef + rig) / 2;
            for (i = 0; i < p; i++) {
                if (val[i] <= mid)
                    edge[i].f = 1;
                else
                    edge[i].f = 0;
            }
            if (dinic(1, ni) >= ti) rig = mid - 1;
            else lef = mid + 1;
        }
        printf("%d\n", lef);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值