数论
文章平均质量分 59
Ariawater
这个作者很懒,什么都没留下…
展开
-
知识点补档3
积性函数若f(x)和g(x)均为积性函数,则h(x)=∑d∣xf(d)g(xd)也为积性函数f(x)和g(x)均为积性函数,则h(x) =\sum_{d\mid x} {f(d)g( \frac{x}{d})}也为积性函数f(x)和g(x)均为积性函数,则h(x)=∑d∣xf(d)g(dx)也为积性函数证明:$ h(x)h(y) = \sum_{d \mid x} {f(d)g( \fr...原创 2020-03-25 21:42:18 · 202 阅读 · 0 评论 -
知识点补档2
数论一.基础知识,定理:∀a,b∈N, a,b ≠ 0,则gcd(a,b)是a与b的线性组合集合{ax+by: x,y∈Z}中的最小正元素,则唯一因子分解:对于所有素数p和所有整数a和b,如果p|ab, 则p|a, p|b合数a仅能以一种方式,写成如右形式: , 其中为素数,, 且为正整数Bezout定理:对于任何整数a和b和它们的的最大公约数d,关于未知数x和y的线性丢番图方程:...原创 2020-03-25 21:41:15 · 185 阅读 · 0 评论 -
杜教bm -- 找规律大法好
这是一个能够线性递推求规律的模板:#include<bits/stdc++.h>using namespace std;#define rep(i,a,n) for (int i=a;i<n;i++)//#define per(i,a,n) for (int i=n-1;i>=a;i--)#define pb push_back//#define mp ma...原创 2018-10-15 15:37:31 · 1401 阅读 · 0 评论 -
那些我们仍未知道的数论的小知识
感谢Acdreamer大佬,感谢大佬的博客,这篇博客是弱渣的我将大佬博客中的一些有关的数论小知识总结一下..默慈金数:一个给定的数的默慈金数是在一个圆上的个点间,画出彼此不相交弦的全部方法的总数。比如为4时,方法数为9,如下图 自然数幂合:题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!pro...转载 2018-04-30 21:36:27 · 250 阅读 · 0 评论 -
求积性函数的前缀和-杜教筛
今晚POJ炸了,就去51nod逛了逛,发现有不少好(好难)题,其中有两道是求从a->b的莫比乌斯函数和/欧拉函数和,彻底Orz后来找到了讲解。mark一下两位大佬写的博客:https://blog.csdn.net/skywalkert/article/details/50500009https://blog.csdn.net/qq_30974369/article/details/7908...转载 2018-04-18 21:20:14 · 296 阅读 · 0 评论 -
大素数判断(C++,Java)
首先是2^63以内可以用的算法,用Miller_Rabin素数测试#include<cstdio>#include<iostream>#include<cstdlib>#include<cstring>#include<ctime>#include<cmath>using namespace std;typed...原创 2018-04-18 19:02:24 · 2372 阅读 · 5 评论 -
Catalan数及其应用
卡特兰数是一个很神奇的东西,个人感觉它很神秘的就能够表示出一些东西先给出这个数列:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012.....聪明的你发现其中的规律了吗?咳咳, 规律就是:C(n) = C(0)C(n-1) + C(1)C(n-2) + .... + C(n-1)C(0), C(0)=C(1)=1, cata...原创 2018-04-12 21:05:43 · 301 阅读 · 0 评论 -
Pollard-Rho算法--大数分解
其实刚开始知道这个算法时,我以为需要字符串操作什么的,毕竟是大数嘛,可这家伙只用了个long long,无语了....long long int,能叫大数吗,连2^100次方都处理不了。说是这样说,这个算法已经不错了,复杂度为O(n^1/4), 貌似目前学界没有找到特别好的算法,据说有什么艾-鲁法,威廉斯夫法,可以分解一个千位素数(需要一周时间)(上面两种算法百度不到QAQ),量子的那个shore...原创 2018-04-11 20:07:26 · 11033 阅读 · 0 评论 -
萌新学数论啦(二)(未完待续)
md数论,我快吐了,花Q~花Q.....(一)斯特林数:第一类斯特林数:把n个对象分成m个非空循环排列的方案数: S(n,m) = (n-1)*S(n-1, m) + S(n-1, m-1).第二类斯特林数:把n个对象划分到k个不可区分的非空盒子的划分数: S(n, m) = m*S(n-1, m) + S(n-1, m-1).把n个对象划分到k个不可区分的可以空的盒子的划分数:...原创 2018-03-21 21:31:32 · 244 阅读 · 0 评论 -
POJ 2891-Strange Way to Express Integers
先给个题目链接:http://poj.org/problem?id=2891题意比较简单,就是给出k个a, r. 求出满足 x mod ai = ri 的x的最小正值,若不存在这样的x,就输出-1.这个题一开始看感觉是在考察中国剩余定理(其实也算是了)。但是,如果我们直接套用中国剩余定理的模板后,就会发现,wa了,为什么呢?这里我们就需要搞清楚中国剩余定理的适用条件,即对于所有的 x ≡ ai m...原创 2018-03-20 21:22:09 · 209 阅读 · 0 评论 -
萌新学数论啦(一)
一.基本概念:整除性:一个整数a能够被另一个整数d整除,记作 d|a,意味着对于某个整数k,有a = k*d。如果d|a,且d >= 0,则d为a的一个约数。对于任意整数x, y,有 d|a 且 d|b 则 d|(ax+by)每个整数a都可以被其平凡约束1和a整除,a的非平凡约数也称为a的因子。公约数;两个不同时为0的整数a和b的最大公约数表示成gcd(a, b),有gcd(0,0) = 0...原创 2018-03-14 21:32:51 · 285 阅读 · 0 评论