(还在完善)
欧拉函数总结
用f(n)表示1到n中与n互质的数。
f(1)=1;
如果n为质数,则f(n)=n-1;(质数与所有数互质)。
如果n=x*y(x与y互质);则f(n)=f(x)*f(y);(与什么中国剩余定理有关这里直接借鉴)。
如果n=p^k;(p为质数,p的k次方),f(n)=p^k-p^k-1;
只有不是p的倍数才可以与n互质,需要把p的倍数剔除,
例如;1*p,2*p,,,,,p^k-1*p,共有p^k-1个。
如果n为任意大于1的数,则n可以写成多个质数相乘的形式:n=p1*p2*……*pk;
所以f(n)=f(p1)f(p2)….*f(pk);因为pi为质数,
f(n)=p1*p2*…pk*(1-1/p1)(1-1/p2)…*(1-1/pk);
=n*(1-p1)(1-p2)…*(1-pk)/n;
=(1-p1)(1-p2)…*(1-pk);
又=n*(1-1/p1)(1-1/p2)…*(1-1/pk);
欧拉函数思路
最新推荐文章于 2024-05-22 21:47:23 发布