DeepKe开源框架实战0:从环境配置到项目运行的踩坑之路

DeepKe是一个开源的知识图谱抽取与构建工具,基于深度学习技术,支持多种任务类型。本文记录了我在配置 DeepKe 环境时遇到的各种问题及解决方案。

已同步更新至博客WenQi Wei,欢迎评论区交流

前言

在知识图谱构建领域,DeepKe 作为一个强大的开源工具,吸引了我的注意。它不仅支持实体关系抽取、属性抽取等多种任务,而且基于 PyTorch 实现,具有良好的扩展性。本文将详细记录我从零开始配置 DeepKe 环境的全过程,希望能帮助遇到类似问题的同学。

环境配置详解

一、代码获取

首先,我们需要获取 DeepKe 的源代码。考虑到国内网络环境,我选择了从 Gitee 克隆代码:

git clone https://gitee.com/openkg/deepke.git

二、环境依赖问题的解决

在配置过程中,我遇到了 conda 命令无法使用的问题。这是一个典型的环境变量配置问题,解决过程如下:

1. 问题诊断

首先通过版本检查确认问题:

conda --version

命令未返回版本号,说明 Anaconda 环境变量未正确配置。

2. 环境变量配置

在 Windows 系统中,需要添加以下路径到系统环境变量:

E:\Anaconda3\Scripts
E:\Anaconda3

提示:请根据你的实际安装路径修改上述地址。

3. 验证配置

重新运行版本检查命令:

conda --version

返回 conda 23.3.1,表明环境变量配置成功。

三、虚拟环境创建与激活

创建专用的 Python 环境是一个好习惯,可以避免依赖冲突。

conda create -n deepke-llm python=3.9

然而,在激活环境时遇到了新的问题。

问题:conda activate 失效

错误信息
在这里插入图片描述

解决方案

  1. 对于 PowerShell 用户:
conda init powershell
  1. 对于 CMD 用户:
conda init cmd.exe

重要提示:初始化后必须重启终端才能生效。

四、项目依赖安装

  1. 首先切换到项目目录:
cd example/llm
  1. 安装项目依赖:
pip install -r requirements.txt

在这里插入图片描述

环境配置要点总结

  1. 版本控制

    • Python 3.9
    • 最新版 conda
    • 最新版 DeepKe
  2. 关键路径

    • Anaconda 安装路径
    • 项目根目录
    • 依赖文件位置
  3. 常见问题解决

    • 环境变量配置
    • conda 命令初始化
    • 虚拟环境管理

后续计划

环境配置完成后,我计划:

  1. 深入学习 DeepKe 的核心功能
  2. 复现几个典型的知识图谱构建案例
  3. 尝试在实际项目中应用

经验总结:在配置深度学习环境时,注意记录每一步操作和可能遇到的问题,这对后续的问题排查和经验分享都很有帮助。


本文是 DeepKe 学习系列的第一篇,后续我会继续分享使用心得和实战经验,欢迎感兴趣的同学一起交流学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值