给定n个结点的树,结点i的权值为a[i], 可以进行操作:选定结点u和参数c,使u的子树的全部结点异或c,花费为c * siz[u]。求分别以1, 2,..., n为根时,使所有结点权值相等的最小花费

文章介绍了如何使用C++编程语言中的深度优先搜索(DFS)和并查集数据结构解决最小花费路径问题,通过计算节点间的异或值和添加操作来找到从根节点到每个节点的最小花费。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pb push_back
const int maxn = 1e6 + 5, inf = 1e9 + 5, maxm = 5e3 + 5;
int a[maxn];
string s;
int n, m;
map<int, int> mp;
int suf[maxn], pre[maxn];
vector<int> G[maxn];
int siz[maxn], ans[maxn], add[maxn];

void dfs(int u, int fa){
    siz[u] = 1;
    for(auto v : G[u]){
        if(v == fa) continue;
        dfs(v, u);
        siz[u] += siz[v];
        ans[1] += (a[u] ^ a[v]) * siz[v];//ans[1]是以1为根的最小花费
        //异或优先级比乘低!!!
        add[v] = -((a[u] ^ a[v]) * siz[v]) + ((a[u] ^ a[v]) * (n - siz[v]));//此时的add[v]表示从以u为根到以v为根最小花费的变化量, 即ans[v] = ans[u] + add[v]
    }
}
void dfs2(int u, int fa){
    for(auto v : G[u]){
        if(v == fa) continue;
        add[v] += add[u];//求前缀和,这样ans[v]就等于ans[1] + add[v]
        dfs2(v, u);
    }
}
void solve()
{
    cin >> n;
    for(int i = 1; i <= n; i++){
        G[i].clear();
        add[i] = 0;
        ans[i] = 0;
    }
    for(int i = 1; i <= n; i++){
        cin >> a[i];
    }
    for(int i = 1; i < n; i++){
        int u, v;
        cin >> u >> v;
        G[u].pb(v);
        G[v].pb(u);
    }
    dfs(1, 1);
    dfs2(1, 1);
    // cout << ans[1] << '\n';
    for(int i = 1; i <= n; i++){
        ans[i] = ans[1] + add[i];
        // cout << i << ' ' << ans[i] << ' ' << add[i] << '\n';
        cout << ans[i] << " \n"[i == n];
    }
}
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    int T = 1;
    cin >> T;
    while (T--)
    {
        solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__night_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值