转载论文
文章平均质量分 70
waynezwj
这个作者很懒,什么都没留下…
展开
-
[Matrix67]二分图最大匹配问题匈牙利算法
<br /> 研究了几个小时,终于明白了。说穿了,就是你从二分图中找出一条路径来,让路径的起点和终点都是还没有匹配过的点,并且路径经过的连线是一条没被 匹配、一条已经匹配过,再下一条又没匹配这样交替地出现。找到这样的路径后,显然路径里没被匹配的连线比已经匹配了的连线多一条,于是修改匹配图,把路径 里所有匹配过的连线去掉匹配关系,把没有匹配的连线变成匹配的,这样匹配数就比原来多1个。不断执行上述操作,直到找不到这样的路径为止。转载 2011-05-09 10:57:00 · 409 阅读 · 0 评论 -
[Matrix67]二分图最大匹配的König定理及其证明
<br /> König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数。如果你还不知道什么是最小点覆 盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边。比如,下面这个图中的最大匹配和最小点覆盖 已分别用蓝色和红色标注。它们都等于3。这个定理相信大多数人都知道,但是网络上给出的证明并不多见。有一些网上常见的“证明”明显是错误的。因此,我在 这里写一下这个定理的证明,希望对大家有所帮助。<br />转载 2011-05-09 10:58:00 · 518 阅读 · 0 评论