LeetCode.783 二叉搜索树节点最小距离

原题

https://leetcode-cn.com/problems/minimum-distance-between-bst-nodes/

在这里插入图片描述

思路

利用中序遍历递增的性质

  • (1)中序遍历得到一个递增的集合,遍历集合得到min
  • (2)遍历过程中记录pre,直接得到min

题解

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int minDiffInBST(TreeNode root) {
//        中序遍历计数
        List<Integer> list = new ArrayList<>();
        midOrder(root, list);

        int len = list.size();
        int res = Integer.MAX_VALUE;
        for (int i = 1; i < len; i++) {
            res = Math.min(res, list.get(i) - list.get(i-1));
        }

        return res;
    }

    private static void midOrder(TreeNode node, List<Integer> list){
        if (node.left != null) {
            midOrder(node.left, list);
        }
        list.add(node.val);
        if (node.right != null) {
            midOrder(node.right, list);
        }
    }

}
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {

    int pre;
    int min;

    public int minDiffInBST(TreeNode root) {
        min = Integer.MAX_VALUE;
        pre = -1;
        midOrder2(root);
        return min;
    }

    private void midOrder2(TreeNode node){
        if (node.left != null) {
            midOrder2(node.left);
        }
        if (pre == -1) {
            pre = node.val;
        } else {
            min = Math.min(min, node.val - pre);
            pre = node.val;
        }

        if (node.right != null) {
            midOrder2(node.right);
        }
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

难过的风景

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值