AI GOD:1012: Attack

http://118.190.162.167/p1012.html

题目描述

两个英雄互相攻击,两个英雄血量为a、b,攻击力为x、y,伤害减免为p、q,攻速分别为v、 w。谁会赢?

血量:就是总生命值,当这个值变为零时死亡。

攻击力:在对方伤害减免为零时,每次攻击使得对方减少的生命值。

伤害减免:可以减小或免除对方的攻击效果,对方攻击使得我方减少的实际生命值=max(0,对方攻击力-我方伤害减免)。A对B的实际伤害为max(0,x-q)。

攻速表示:每两次之间的间隔,攻击本身瞬间完成。

当两个人同时攻击对方并导致死亡时,认为同时死亡,在第0时刻就可以发动第一次攻击。

 

更多细节参考输入输出样例。

数据范围

小数据:

整数a, b: 1<=a, b<=10000

整数x, y: 1<=x, y<=10000

整数p, q: 0<=p<=y, 0<=q<=x

两位小数 v, w: 0.01<=v=w<=10.00

大数据:

整数a, b: 1<=a, b<=1000000000

整数x, y: 1<=x, y<=10000

整数p, q: 0<=p<=10000, 0<=q<=10000

 

两位小数 v, w: 0.01<=v, w<=10.00

输入描述

第一行一个整数t(t<=100),代表有t组。

 

之后t行,每行有8个数a, b, x, y, p, q, v, w。

输出描述

每组数据,若A赢输出“A”,若B赢输出“B”,如果两个人同时死或者都不死输出“Draw”。

 

思路如下:计算两位英雄砍死对方需要的攻击次数,再乘以对应的攻速计算出相应的时间,通过时间判断输赢。需要注意的是,n次攻击对应的时间为(n-1)*攻速。同时,若两位英雄最后一次攻击对应的时间为同一时刻,则需判断是否会同时死亡:

AC代码:

#include<iostream>
#include<stdio.h>
#include<math.h>
using namespace std;

int main()
{
	int num;
	float a1,a2;     //for big data check
	int x1,x2,p1,p2;
	int after_a1,after_a2;
	float v1,v2;
	float t1,t2; //kill other time
	float t11,t22;//last attack
	freopen("input.txt","r",stdin);
	cin>>num;
	while(num--)
	{
		cin>>a1>>a2>>x1>>x2>>p1>>p2>>v1>>v2;
		if(((x1-p2)<=0)||(x2-p1)<=0)
		{
			if(((x1-p2)<=0)&&(x2-p1)<=0)cout<<"Draw"<<endl;
			else if((x1-p2)<=0)cout<<"B"<<endl;
			else cout<<"A"<<endl;
		}
		else
		{

			t1=(ceil(a2/(x1-p2))-1)*v1;
			t2=(ceil(a1/(x2-p1))-1)*v2;
			after_a2=a2-(ceil(a2/(x1-p2))-1)*(x1-p2);
			after_a1=a1-(ceil(a1/(x2-p1))-1)*(x2-p1);
			if(t1<t2)
			{
                		cout<<"A"<<endl;
			}
			if(t2<t1)
			{
               			 if((t1-v1)==(t2-v2))
                		{
                   			 if(after_a2<=(x1-p2))cout<<"Draw"<<endl;
                    			 else cout<<"B"<<endl;
                		}
				else cout<<"B"<<endl;
			}
			if(t2==t1)
			{
			    if((after_a2<=(x1-p2))&&(after_a1<=(x2-p1)))
			    cout<<"Draw"<<endl;
			}
		}
	}
	return 0;
}


 

内容概要:文章介绍了针对COVID-19的药物再利用的创新方法,这种方法融合了基于文献的知识(LitCovid和CORD-19数据集)及先进的知识图谱补全技术。具体采用了基于神经网络的TransE、RotatE等多种算法预测药物再利用的潜力,并通过开放和封闭的发现模式为预测结果提供合理的机制解释,包括发现模式、准确性分类及定性评估等手段,增强了方法的实用性。研究表明,TransE表现最优,并成功预测并验证了一系列药物作为COVID-19的治疗候选人选。此外,方法不仅适用于COVID-19,还具备应用于其他疾病药物再利用及其他临床问题解决的潜力。此研究为快速高效地推进药物再利用提供了一个新的计算框架。 适合人群:生物医学科研人员,从事药品再利用、人工智能药物筛选的专业研究人员,对生物信息数据分析和处理感兴趣的学者或技术人员。 使用场景及目标:① 利用计算模型预测药物能否被重新应用于新的适应症,尤其是在面对突发公共卫生事件时加快新药物的研发进程。② 对现有药物进行再评价,以发现更广泛、安全、有效的治疗用途,为临床治疗提供依据和理论指导。③ 探讨通过自动化手段发掘药物作用机理的技术路径。 其他说明:作者团队来自多个国家和地区,研究获得了多项国家级基金支持,论文详尽描述了实验细节,并附上了全部代码和数据资源供后续拓展和重复研究使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值