获取题库不需要订阅专栏,可直接私信我进入CSDN领军人物top1博主的华为OD交流圈观看完整题库、最新面试实况、考试报告等内容以及大佬一对一答疑。
题目描述
给定 M(0 < M ≤ 30)个字符(a-z),从中取出任意字符(每个字符只能用一次)拼接成长度为 N(0 < N ≤ 5)的字符串,
要求相同的字符不能相邻,计算出给定的字符列表能拼接出多少种满足条件的字符串,
输入非法或者无法拼接出满足条件的字符串则返回0。
输入描述
给定的字符列表和结果字符串长度,中间使用空格(" ")拼接
输出描述
满足条件的字符串个数
题目解析
这个问题可以通过动态规划来解决。状态转移方程基于当前字符的位置以及上一个字符的选择情况来构建。设 dp[i][j] 表示已经选择了 i 个字符,且最后一个选择的字符为第 j 种字符时,能够组成的合法字符串的数量。由于相同的字符不能相邻,我们需要考虑上一个字符的选择状态。但这里有一个简化的思路,我们只需要知道前一个字符是否与当前字符相同即可,因此可以将状态压缩为一维数组 dp[j],表示在已选择的序列末尾放置的是字符 j 的情况下,