436. 寻找右区间(排序+二分)

给你一个区间数组 intervals ,其中 intervals[i] = [starti, endi] ,且每个 starti 都 不同 。

区间 i 的 右侧区间 可以记作区间 j ,并满足 startj >= endi ,且 startj 最小化 。

返回一个由每个区间 i 的 右侧区间 的最小起始位置组成的数组。如果某个区间 i 不存在对应的 右侧区间 ,则下标 i 处的值设为 -1 。

 
示例 1:

输入:intervals = [[1,2]]
输出:[-1]
解释:集合中只有一个区间,所以输出-1。
示例 2:

输入:intervals = [[3,4],[2,3],[1,2]]
输出:[-1,0,1]
解释:对于 [3,4] ,没有满足条件的“右侧”区间。
对于 [2,3] ,区间[3,4]具有最小的“右”起点;
对于 [1,2] ,区间[2,3]具有最小的“右”起点。
示例 3:

输入:intervals = [[1,4],[2,3],[3,4]]
输出:[-1,2,-1]
解释:对于区间 [1,4] 和 [3,4] ,没有满足条件的“右侧”区间。
对于 [2,3] ,区间 [3,4] 有最小的“右”起点。

//整体O(NlogN)
class Solution {
public:
    vector<int> findRightInterval(vector<vector<int>>& intervals) {
        vector<pair<int, int>> temp(intervals.size());
        for (int i = 0; i < intervals.size(); i++)
            temp[i] = make_pair(intervals[i][0], i);
        // 对右端进行排序
        sort(temp.begin(), temp.end(), [](pair<int, int> x, pair<int, int> y) {return x.first < y.first; }); // O(NlogN)

        vector<int> res;
        // 对每个区间进行二分查找
        for (int i = 0; i < intervals.size(); i++) { //O(N)
            //O(logN)
            auto it = lower_bound(temp.begin(), temp.end(), make_pair(intervals[i][1], -1), [](pair<int, int> x, pair<int, int> y) {return x.first < y.first; });
            if (it == temp.end())
                res.push_back(-1);
            else
                res.push_back(it->second);
        }
        return res;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值