给你一个区间数组 intervals ,其中 intervals[i] = [starti, endi] ,且每个 starti 都 不同 。
区间 i 的 右侧区间 可以记作区间 j ,并满足 startj >= endi ,且 startj 最小化 。
返回一个由每个区间 i 的 右侧区间 的最小起始位置组成的数组。如果某个区间 i 不存在对应的 右侧区间 ,则下标 i 处的值设为 -1 。
示例 1:
输入:intervals = [[1,2]]
输出:[-1]
解释:集合中只有一个区间,所以输出-1。
示例 2:
输入:intervals = [[3,4],[2,3],[1,2]]
输出:[-1,0,1]
解释:对于 [3,4] ,没有满足条件的“右侧”区间。
对于 [2,3] ,区间[3,4]具有最小的“右”起点;
对于 [1,2] ,区间[2,3]具有最小的“右”起点。
示例 3:
输入:intervals = [[1,4],[2,3],[3,4]]
输出:[-1,2,-1]
解释:对于区间 [1,4] 和 [3,4] ,没有满足条件的“右侧”区间。
对于 [2,3] ,区间 [3,4] 有最小的“右”起点。
//整体O(NlogN)
class Solution {
public:
vector<int> findRightInterval(vector<vector<int>>& intervals) {
vector<pair<int, int>> temp(intervals.size());
for (int i = 0; i < intervals.size(); i++)
temp[i] = make_pair(intervals[i][0], i);
// 对右端进行排序
sort(temp.begin(), temp.end(), [](pair<int, int> x, pair<int, int> y) {return x.first < y.first; }); // O(NlogN)
vector<int> res;
// 对每个区间进行二分查找
for (int i = 0; i < intervals.size(); i++) { //O(N)
//O(logN)
auto it = lower_bound(temp.begin(), temp.end(), make_pair(intervals[i][1], -1), [](pair<int, int> x, pair<int, int> y) {return x.first < y.first; });
if (it == temp.end())
res.push_back(-1);
else
res.push_back(it->second);
}
return res;
}
};